
Dessiner de l’UML avec PlantUML

Guide de référence du langage PlantUML
(Version 1.2025.0)

PlantUML est un composant qui permet de dessiner rapidement des:

• diagrammes de séquence

• diagrammes de cas d’utilisation

• diagrammes de classes

• diagrammes d’objet

• diagrammes d’activité

• diagrammes de composant

• diagrammes de déploiement

• diagrammes d’état

• diagrammes de temps

Certains autres diagrammes (hors UML) sont aussi possibles:

• données au format JSON

• données au format YAML

• diagrammes de réseaux (nwdiag)

• maquettes d’interface graphique (salt)

• diagrammes Archimate

• diagrammes de langage de description et de spécification (SDL)

• diagrammes ditaa

• diagrammes de Gantt

• diagrammes d’idées (mindmap)

• organigramme (Work Breakdown Structure)

• notation mathématique avec AsciiMath ou JLaTeXMath

• diagrammes entité relation (ER/IE)

Les diagrammes sont définis à l’aide d’un langage simple et intuitif.

1 DIAGRAMME DE SÉQUENCE

1 Diagramme de séquence
Créer des diagrammes de séquence avec PlantUML est remarquablement simple. Cette facilité d’utilisation
est largement attribuée à la nature conviviale de sa syntaxe, conçue pour être à la fois intuitive et facile
à mémoriser.

• Syntaxe intuitive :

Tout d’abord, les utilisateurs apprécient la syntaxe simple et intuitive de PlantUML. Cette conception
bien pensée signifie que même ceux qui sont novices dans la création de diagrammes trouvent qu’il est
facile de saisir les bases rapidement et sans problème.

• Corrélation texte-graphique :

Une autre caractéristique distinctive est l’étroite ressemblance entre la représentation textuelle et la
sortie graphique. Cette corrélation harmonieuse garantit que les ébauches textuelles se traduisent très
précisément en diagrammes graphiques, offrant une expérience de conception cohérente et prévisible, sans
surprise désagréable dans le résultat final.

• Processus d’élaboration efficace :

La forte corrélation entre le texte et le résultat graphique simplifie non seulement le processus de créa-
tion, mais l’accélère également de manière significative. Les utilisateurs bénéficient d’un processus plus
rationnel, avec moins de révisions et d’ajustements fastidieux.

• Visualisation pendant la rédaction :

La possibilité d’envisager le résultat graphique final tout en rédigeant le texte est une fonction que
beaucoup trouvent inestimable. Elle favorise naturellement une transition en douceur entre le projet
initial et la présentation finale, ce qui améliore la productivité et réduit la probabilité d’erreurs.

• Facilité d’édition et de révision :

Il est important de noter que l’édition des diagrammes existants est un processus sans problème. Comme
les diagrammes sont générés à partir de texte, les utilisateurs constatent qu’il est beaucoup plus facile
et plus précis de faire des ajustements que de modifier une image à l’aide d’outils graphiques. Il s’agit
simplement de modifier le texte, un processus beaucoup plus simple et moins sujet aux erreurs que de
faire des changements à travers une interface graphique avec une souris.

PlantUML facilite une approche directe et conviviale de la création et de l’édition de diagrammes de
séquence, répondant aux besoins des novices comme des concepteurs chevronnés. Il exploite habilement
la simplicité des entrées textuelles pour créer des diagrammes visuellement descriptifs et précis, s’imposant
ainsi comme un outil indispensable dans la boîte à outils de création de diagrammes.

Vous pouvez en savoir plus sur certaines des commandes courantes de PlantUML pour améliorer votre
expérience de création de diagrammes.

1.1 Exemples de base
Dans les diagrammes de séquence PlantUML, la séquence -> dénote un message envoyé entre deux
participants, qui sont automatiquement reconnus et n’ont pas besoin d’être déclarés au préalable.

Utilisez les flèches pointillées en employant la séquence -->, offrant une visualisation distincte dans vos
diagrammes.

Pour améliorer la lisibilité sans affecter la représentation visuelle, utilisez des flèches inversées comme <-
ou <--. Cependant, soyez conscient que ceci est spécifiquement pour les diagrammes de séquence et que
les règles diffèrent pour d’autres types de diagrammes.

@startuml
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

Alice -> Bob: Another authentication Request
Alice <-- Bob: Another authentication Response
@enduml

Guide de référence du langage PlantUML (1.2025.0) 1 / 580

1.2 Déclaration d’un participant 1 DIAGRAMME DE SÉQUENCE

1.2 Déclaration d’un participant
Si le mot-clé participant est utilisé pour déclarer un participant, il est possible d’exercer un contrôle
accru sur ce participant.

L’ordre de déclaration sera l’ordre d’affichage(par défaut).

L’utilisation de ces autres mots-clés pour déclarer des participants modifiera la forme de la représen-
tation du participant :

• actor

• boundary

• control

• entity

• database

• collections

• queue

@startuml
participant Participant as Foo
actor Actor as Foo1
boundary Boundary as Foo2
control Control as Foo3
entity Entity as Foo4
database Database as Foo5
collections Collections as Foo6
queue Queue as Foo7
Foo -> Foo1 : To actor
Foo -> Foo2 : To boundary
Foo -> Foo3 : To control
Foo -> Foo4 : To entity
Foo -> Foo5 : To database
Foo -> Foo6 : To collections
Foo -> Foo7: To queue
@enduml

Guide de référence du langage PlantUML (1.2025.0) 2 / 580

1.2 Déclaration d’un participant 1 DIAGRAMME DE SÉQUENCE

Renommez un participant en utilisant le mot-clé as.

Vous pouvez également modifier la couleur de fond de l’acteur ou du participant .

@startuml
actor Bob #red
' The only difference between actor
'and participant is the drawing
participant Alice
participant "I have a really\nlong name" as L #99FF99
/' You can also declare:

participant L as "I have a really\nlong name" #99FF99
'/

Alice->Bob: Authentication Request
Bob->Alice: Authentication Response
Bob->L: Log transaction
@enduml

Vous pouvez utiliser le mot-clé order pour personnaliser l’ordre d’affichage des participants.

@startuml
participant Last order 30
participant Middle order 20
participant First order 10

Guide de référence du langage PlantUML (1.2025.0) 3 / 580

1.3 Déclaration des participants sur plusieurs lignes 1 DIAGRAMME DE SÉQUENCE

@enduml

1.3 Déclaration des participants sur plusieurs lignes
Vous pouvez déclarer des participants sur plusieurs lignes.

@startuml
participant Participant [

=Title

""SubTitle""

]

participant Bob

Participant -> Bob
@enduml

[Ref. QA-15232]

1.4 Caractères non alphanumérique dans les participants
Si vous voulez mettre des charactères non alphanumériques, il est possible d’utiliser des guillemets. Et
on peut utiliser le mot clé as pour définir un alias pour ces participants.

@startuml
Alice -> "Bob()" : Hello
"Bob()" -> "This is very\nlong" as Long
' You can also declare:
' "Bob()" -> Long as "This is very\nlong"
Long --> "Bob()" : ok
@enduml

Guide de référence du langage PlantUML (1.2025.0) 4 / 580

1.5 Message à soi-même 1 DIAGRAMME DE SÉQUENCE

1.5 Message à soi-même
Un participant peut s’envoyer un message à lui-même.

Il est également possible d’avoir plusieurs lignes en utilisant \n

@startuml
Alice -> Alice: This is a signal to self.\nIt also demonstrates\nmultiline \ntext
@enduml

@startuml
Alice <- Alice: This is a signal to self.\nIt also demonstrates\nmultiline \ntext
@enduml

[Réf. QA-1361]

1.6 Alignement du texte
L’alignement du texte sur les flèches peut être défini sur left, right ou center en utilisant skinparam
sequenceMessageAlign.

Vous pouvez également utiliser direction ou reverseDirection pour aligner le texte en fonction de la
direction de la flèche. De plus amples détails et des exemples sont disponibles sur la page skinparam.

@startuml
skinparam sequenceMessageAlign right
Bob -> Alice : Request
Alice -> Bob : Response
@enduml

1.6.1 Texte du message de réponse sous la flèche

Vous pouvez placer le texte du message de réponse sous la flèche, avec la commande skinparam responseMessageBelowArrow
true

Guide de référence du langage PlantUML (1.2025.0) 5 / 580

1.7 Autre style de flèches 1 DIAGRAMME DE SÉQUENCE

@startuml
skinparam responseMessageBelowArrow true
Bob -> Alice : hello
Bob <- Alice : ok
@enduml

1.7 Autre style de flèches
Vous pouvez changer les flèches de plusieurs façons :

• Pour indiquer un message perdu, terminer la flèche avec x

• Utiliser \ ou / à la place de < ou > pour avoir seulement la partie supérieure ou inférieure de la
flèche.

• Doubler un des caractères (par exemple, >> ou //)pour avoir une flèche plus fine.

• Utiliser -- à la place de - pour avoir des pointillés.

• Utiliser ”o” après la flèche

• Utiliser une flèche bi-directionnelle <->

@startuml
Bob ->x Alice
Bob -> Alice
Bob ->> Alice
Bob -\ Alice
Bob \\- Alice
Bob //-- Alice

Bob ->o Alice
Bob o\\-- Alice

Bob <-> Alice
Bob <->o Alice
@enduml

1.8 Changer la couleur des flèches
Changer la couleur d’une flèche ainsi:

Guide de référence du langage PlantUML (1.2025.0) 6 / 580

1.9 Numérotation séquentielle des messages 1 DIAGRAMME DE SÉQUENCE

@startuml
Bob -[#red]> Alice : bonjour
Alice -[#0000FF]->Bob : ok
@enduml

1.9 Numérotation séquentielle des messages
Le mot clé autonumber est utilisé pour ajouter automatiquement un numéro incrémentiel aux messages

@startuml
autonumber
Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response
@enduml

Vous pouvez spécifier un numéro de début avec autonumber <start> et également un incrément avec
autonumber <start> <increment>.

@startuml
autonumber
Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response

autonumber 15
Bob -> Alice : Another authentication Request
Bob <- Alice : Another authentication Response

autonumber 40 10
Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response

@enduml

Guide de référence du langage PlantUML (1.2025.0) 7 / 580

1.9 Numérotation séquentielle des messages 1 DIAGRAMME DE SÉQUENCE

Vous pouvez spécifier un format pour votre nombre en utilisant entre guillemets.

Le formatage est fait avec la classe Java DecimalFormat (0 signifie chiffre, # signifie chiffre et zéro si
absent).

Vous pouvez utiliser une balise html dans le format

@startuml
autonumber "[000]"
Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response

autonumber 15 "(<u>##</u>)"
Bob -> Alice : Another authentication Request
Bob <- Alice : Another authentication Response

autonumber 40 10 "Message 0 "
Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response

@enduml

Vous pouvez également utiliser autonumber stop et autonumber resume <increment> <format> pour
respectivement interrompre et reprendre la numérotation automatique de

@startuml
autonumber 10 10 "[000]"
Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response

autonumber stop
Bob -> Alice : dummy

Guide de référence du langage PlantUML (1.2025.0) 8 / 580

1.9 Numérotation séquentielle des messages 1 DIAGRAMME DE SÉQUENCE

autonumber resume "Message 0 "
Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response

autonumber stop
Bob -> Alice : dummy

autonumber resume 1 "Message 0 "
Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response
@enduml

Votre numéro de départ peut également être une séquence de 2 ou 3 chiffres utilisant un délimiteur de
champ tel que ., ;, ,, : ou un mélange de ceux-ci. Par exemple : 1.1.1 ou 1.1:1.

Le dernier chiffre s’incrémente automatiquement.

Pour incrémenter le premier chiffre, utilisez : autonumber inc A. Pour incrémenter le deuxième chiffre,
utilisez : autonumber inc B

@startuml
autonumber 1.1.1
Alice -> Bob: Authentication request
Bob --> Alice: Response

autonumber inc A
'Now we have 2.1.1
Alice -> Bob: Another authentication request
Bob --> Alice: Response

autonumber inc B
'Now we have 2.2.1
Alice -> Bob: Another authentication request
Bob --> Alice: Response

autonumber inc A
'Now we have 3.1.1
Alice -> Bob: Another authentication request
autonumber inc B
'Now we have 3.2.1
Bob --> Alice: Response
@enduml

Guide de référence du langage PlantUML (1.2025.0) 9 / 580

1.10 Titre, en-tête et pied de page de la page 1 DIAGRAMME DE SÉQUENCE

Vous pouvez également utiliser la valeur de autonumber avec la variable %autonumber%

@startuml
autonumber 10
Alice -> Bob
note right

the <U+0025>autonumber<U+0025> works everywhere.
Here, its value is ** %autonumber% **

end note
Bob --> Alice: //This is the response %autonumber%//
@enduml

[Réf. QA-7119]

1.10 Titre, en-tête et pied de page de la page
Le mot clé title est utilisé pour ajouter un titre à la page.

Les pages peuvent afficher des en-têtes et des pieds de page en utilisant header et footer.

@startuml

header Page Header
footer Page %page% of %lastpage%

title Example Title

Alice -> Bob : message 1
Alice -> Bob : message 2

@enduml

Guide de référence du langage PlantUML (1.2025.0) 10 / 580

1.11 Découper un diagramme 1 DIAGRAMME DE SÉQUENCE

1.11 Découper un diagramme
Le mot clé newpage est utilisé pour découper un digramme en plusieurs images.

Vous pouvez mettre un titre pour la nouvelle page juste après le mot clé newpage.

Ceci est très pratique pour mettre de très longs digrammes sur plusieurs pages.

@startuml

Alice -> Bob : message 1
Alice -> Bob : message 2

newpage

Alice -> Bob : message 3
Alice -> Bob : message 4

newpage A title for the\nlast page

Alice -> Bob : message 5
Alice -> Bob : message 6
@enduml

1.12 Regrouper les messages (cadres UML)
Il est possible de regrouper les messages dans un cadre UML à l’aide d’un des mot clés suivants:

• alt/else

• opt

• loop

• par

• break

• critical

• group, suivi par le texte à afficher

Guide de référence du langage PlantUML (1.2025.0) 11 / 580

1.13 Étiquette secondaire de groupe 1 DIAGRAMME DE SÉQUENCE

Il est aussi possible de mettre un texte à afficher dans l’entête. Le mot-clé end est utilisé pour fermer le
groupe. Il est aussi possible d’imbriquer les groupes.

Terminer le cadre avec le mot-clé end.

Il est possible d’imbriquer les cadres.

@startuml
Alice -> Bob: Authentication Request

alt successful case

Bob -> Alice: Authentication Accepted

else some kind of failure

Bob -> Alice: Authentication Failure
group My own label
Alice -> Log : Log attack start

loop 1000 times
Alice -> Bob: DNS Attack

end
Alice -> Log : Log attack end
end

else Another type of failure

Bob -> Alice: Please repeat

end
@enduml

1.13 Étiquette secondaire de groupe
Pour les group, il est possible d’ajouter, entre[et], un texte ou une étiquette secondaire qui sera affiché
dans l’en-tête

@startuml

Guide de référence du langage PlantUML (1.2025.0) 12 / 580

1.14 Note sur les messages 1 DIAGRAMME DE SÉQUENCE

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Failure
group My own label [My own label 2]

Alice -> Log : Log attack start
loop 1000 times

Alice -> Bob: DNS Attack
end
Alice -> Log : Log attack end

end
@enduml

[Réf. QA-2503]

1.14 Note sur les messages
Pour attacher une note à un message, utiliser les mots-clés note left (pour une note à gauche) ou note
right (pour une note à droite) juste après le message.

Il est possible d’avoir une note sur plusieurs lignes avec le mot clé end note.

@startuml
Alice->Bob : hello
note left: this is a first note

Bob->Alice : ok
note right: this is another note

Bob->Bob : I am thinking
note left
a note
can also be defined
on several lines
end note
@enduml

Guide de référence du langage PlantUML (1.2025.0) 13 / 580

1.15 Encore plus de notes 1 DIAGRAMME DE SÉQUENCE

1.15 Encore plus de notes
Il est aussi possible de mettre des notes placées par rapport aux participants.

Il est aussi possible de faire ressortir une note en changeant sa couleur de fond.

On peut aussi avoir des notes sur plusieurs lignes à l’aide du mot clé end note.

@startuml
participant Alice
participant Bob
note left of Alice #aqua
This is displayed
left of Alice.
end note

note right of Alice: This is displayed right of Alice.

note over Alice: This is displayed over Alice.

note over Alice, Bob #FFAAAA: This is displayed\n over Bob and Alice.

note over Bob, Alice
This is yet another
example of
a long note.
end note
@enduml

Guide de référence du langage PlantUML (1.2025.0) 14 / 580

1.16 Changer l’aspect des notes 1 DIAGRAMME DE SÉQUENCE

1.16 Changer l’aspect des notes
Vous pouvez préciser la forme géométrique des notes :

• rnote : pour rectangulaire,

• hnote : pour hexagonale.

@startuml
caller -> server : conReq
hnote over caller : idle
caller <- server : conConf
rnote over server
"r" as rectangle
"h" as hexagon

endrnote
rnote over server
this is
on several
lines

endrnote
hnote over caller
this is
on several
lines

endhnote
@enduml

[Ref. QA-1765]

1.17 Note sur tous les participants [à travers]
Vous pouvez directement faire une note sur tous les participants, avec la syntaxe :

• note across: note_description

@startuml
Alice->Bob:m1
Bob->Charlie:m2
note over Alice, Charlie: Old method for note over all part. with:\n ""note over //FirstPart, LastPart//"".
note across: New method with:\n""note across""
Bob->Alice
hnote across:Note across all part.

Guide de référence du langage PlantUML (1.2025.0) 15 / 580

1.18 Plusieurs notes alignées au même niveau [/] 1 DIAGRAMME DE SÉQUENCE

@enduml

[Réf. QA-9738]

1.18 Plusieurs notes alignées au même niveau [/]
Vous pouvez faire plusieurs notes alignées au même niveau, avec la syntaxe /:

• sans / (par défaut, les notes ne sont pas alignées)

@startuml
note over Alice : initial state of Alice
note over Bob : initial state of Bob
Bob -> Alice : hello
@enduml

• avec / (les notes sont alignées)

@startuml
note over Alice : initial state of Alice
/ note over Bob : initial state of Bob
Bob -> Alice : hello
@enduml

[Réf. QA-354]

Guide de référence du langage PlantUML (1.2025.0) 16 / 580

1.19 Créole (langage de balisage léger) et HTML 1 DIAGRAMME DE SÉQUENCE

1.19 Créole (langage de balisage léger) et HTML
Il est également possible d’utiliser le formatage créole (langage de balisage léger):

@startuml
participant Alice
participant "The **Famous** Bob" as Bob

Alice -> Bob : hello --there--
... Some ~~long delay~~ ...
Bob -> Alice : ok
note left

This is **bold**
This is //italics//
This is ""monospaced""
This is --stroked--
This is __underlined__
This is ~~waved~~

end note

Alice -> Bob : A //well formatted// message
note right of Alice
This is <back:cadetblue><size:18>displayed</size></back>
__left of__ Alice.

end note
note left of Bob
<u:red>This</u> is <color #118888>displayed</color>
<color purple>left of</color> <s:red>Alice</strike> Bob.

end note
note over Alice, Bob
<w:#FF33FF>This is hosted</w> by

end note
@enduml

Guide de référence du langage PlantUML (1.2025.0) 17 / 580

1.20 Diviseur ou séparateur 1 DIAGRAMME DE SÉQUENCE

1.20 Diviseur ou séparateur
Si vous le souhaitez, vous pouvez diviser un diagramme en utilisant == comme séparateur pour diviser
votre diagramme en étapes logiques

@startuml

== Initialization ==

Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

== Repetition ==

Alice -> Bob: Another authentication Request
Alice <-- Bob: another authentication Response

@enduml

1.21 Référence
Vous pouvez ajouter des références dans un diagramme, en utilisant le mot-clé ref over.

@startuml
participant Alice
actor Bob

ref over Alice, Bob : init

Alice -> Bob : hello

ref over Bob
This can be on
several lines

end ref
@enduml

Guide de référence du langage PlantUML (1.2025.0) 18 / 580

1.22 Retard 1 DIAGRAMME DE SÉQUENCE

1.22 Retard
Utiliser ... pour indiquer le passage de temps arbitraire dans le diagramme. Un message peut être
associé à un retard.

@startuml

Alice -> Bob: Authentication Request
...
Bob --> Alice: Authentication Response
...5 minutes later...
Bob --> Alice: Bye !

@enduml

1.23 Habillage du texte
Pour interrompre de longs messages, vous pouvez ajouter manuellement \n dans votre texte.

Une autre option consiste à utiliser le paramètre maxMessageSize

@startuml
skinparam maxMessageSize 50
participant a
participant b
a -> b :this\nis\nmanually\ndone
a -> b :this is a very long message on several words
@enduml

Guide de référence du langage PlantUML (1.2025.0) 19 / 580

1.24 Séparation verticale 1 DIAGRAMME DE SÉQUENCE

1.24 Séparation verticale
Utiliser ||| pour créer un espace vertical dans le diagramme.

Il est également possible de spécifier un nombre de pixels pour la séparation verticale.

@startuml

Alice -> Bob: message 1
Bob --> Alice: ok
|||
Alice -> Bob: message 2
Bob --> Alice: ok
||45||
Alice -> Bob: message 3
Bob --> Alice: ok

@enduml

1.25 Lignes de vie
Vous pouvez utiliser activate et deactivate pour marquer l’activation des participants.

Une fois qu’un participant est activé, sa ligne de vie apparaît.

Les ordres activate et deactivate s’applique sur le message situé juste avant.

Guide de référence du langage PlantUML (1.2025.0) 20 / 580

1.25 Lignes de vie 1 DIAGRAMME DE SÉQUENCE

Le mot clé destroy sert à montrer la fin de vie d’un participant.

@startuml
participant User

User -> A: DoWork
activate A

A -> B: << createRequest >>
activate B

B -> C: DoWork
activate C
C --> B: WorkDone
destroy C

B --> A: RequestCreated
deactivate B

A -> User: Done
deactivate A

@enduml

Les lignes de vie peuvent être imbriquées, et il est possible de les colorer.

@startuml
participant User

User -> A: DoWork
activate A #FFBBBB

A -> A: Internal call
activate A #DarkSalmon

A -> B: << createRequest >>
activate B

B --> A: RequestCreated
deactivate B
deactivate A
A -> User: Done
deactivate A

@enduml

Guide de référence du langage PlantUML (1.2025.0) 21 / 580

1.26 Retour 1 DIAGRAMME DE SÉQUENCE

1.26 Retour
La commande return génère un message de retour avec un libellé facultatif.

Le point de retour est celui qui a provoqué l’activation la plus récente de la ligne de vie.

La syntaxe est return label où label, si elle est fournie, est toute chaîne acceptable pour les messages
conventionnels.

@startuml
Bob -> Alice : hello
activate Alice
Alice -> Alice : some action
return bye
@enduml

1.27 Création d’un participant
Vous pouvez utiliser le mot clé create juste avant la première réception d’un message pour souligner le
fait que ce message crée effectivement ce nouvel objet.

@startuml
Bob -> Alice : hello

create Other
Alice -> Other : new

create control String
Alice -> String
note right : You can also put notes!

Alice --> Bob : ok

@enduml

Guide de référence du langage PlantUML (1.2025.0) 22 / 580

1.28 Syntaxe raccourcie pour l’activation, la désactivation, la création1 DIAGRAMME DE SÉQUENCE

1.28 Syntaxe raccourcie pour l’activation, la désactivation, la création
Immédiatement après avoir spécifié le participant cible, la syntaxe suivante peut être utilisée :

• ++ Activer la cible (une couleurpeut éventuellement suivre)

• -- Désactiver la source

• ** Créer une instance de la cible

• !! Détruire une instance de la cible

@startuml
alice -> bob ++ : hello
bob -> bob ++ : self call
bob -> bib ++ #005500 : hello
bob -> george ** : create
return done
return rc
bob -> george !! : delete
return success
@enduml

Vous pouvez alors mélanger activation et désactivation, sur la même ligne

@startuml
alice -> bob ++ : hello1

Guide de référence du langage PlantUML (1.2025.0) 23 / 580

1.29 Messages entrant et sortant 1 DIAGRAMME DE SÉQUENCE

bob -> charlie --++ : hello2
charlie --> alice -- : ok
@enduml

@startuml
@startuml
alice -> bob --++ #gold: hello
bob -> alice --++ #gold: you too
alice -> bob --: step1
alice -> bob : step2
@enduml
@enduml

[Réf. QA-4834, QA-9573 et QA-13234]

1.29 Messages entrant et sortant
Vous pouvez utiliser des flèches qui viennent de la droite ou de la gauche pour dessiner un sous-diagramme.

Il faut utiliser des crochets pour indiquer la gauche ”[” ou la droite ”]” du diagramme.

@startuml
[-> A: DoWork

activate A

A -> A: Internal call
activate A

A ->] : << createRequest >>

A<--] : RequestCreated
deactivate A
[<- A: Done
deactivate A
@enduml

Guide de référence du langage PlantUML (1.2025.0) 24 / 580

1.30 Flèches courtes pour les messages entrants et sortants 1 DIAGRAMME DE SÉQUENCE

Vous pouvez aussi utiliser la syntaxe suivante:

@startuml
[-> Bob
[o-> Bob
[o->o Bob
[x-> Bob

[<- Bob
[x<- Bob

Bob ->]
Bob ->o]
Bob o->o]
Bob ->x]

Bob <-]
Bob x<-]
@enduml

1.30 Flèches courtes pour les messages entrants et sortants
Vous pouvez avoir des flèches courtes en utilisant ?

@startuml
?-> Alice : ""?->""\n**short** to actor1
[-> Alice : ""[->""\n**from start** to actor1
[-> Bob : ""[->""\n**from start** to actor2
?-> Bob : ""?->""\n**short** to actor2
Alice ->] : ""->]""\nfrom actor1 **to end**
Alice ->? : ""->?""\n**short** from actor1
Alice -> Bob : ""->"" \nfrom actor1 to actor2

Guide de référence du langage PlantUML (1.2025.0) 25 / 580

1.31 Anchors and Duration 1 DIAGRAMME DE SÉQUENCE

@enduml

[Réf. QA-310]

1.31 Anchors and Duration
En utilisant teoz il est possible d’ajouter des balises au diagramme et d’utiliser ces balises pour preciser
la duree.

@startuml
!pragma teoz true

{start} Alice -> Bob : commencer a faire quelque chose pour une certaine duree
Bob -> Max : quelque chose
Max -> Bob : quelque chose d'autre
{end} Bob -> Alice : terminer

{start} <-> {end} : la duree en question

@enduml

Vous pouvez utiliser l’option de ligne de commande -P pour spécifier le pragma:

java -jar plantuml.jar -Pteoz=true

[Ref. issue-582]

Guide de référence du langage PlantUML (1.2025.0) 26 / 580

1.32 Stéréotypes et décoration 1 DIAGRAMME DE SÉQUENCE

1.32 Stéréotypes et décoration
Il est possible de rajouter un stéréotype aux participants en utilisant ”<<” et ”>>”.

Dans le stéréotype, vous pouvez ajouter un caractère entouré d’un cercle coloré en utilisant la syntaxe
(X,couleur).

@startuml

participant "Famous Bob" as Bob << Generated >>
participant Alice << (C,#ADD1B2) Testable >>

Bob->Alice: First message

@enduml

Par défaut, le caractère guillemet est utilisé pour afficher les stéréotypes. Vous pouvez changer ce com-
portement en utilisant la propriété skinparam guillemet:

@startuml

skinparam guillemet false
participant "Famous Bob" as Bob << Generated >>
participant Alice << (C,#ADD1B2) Testable >>

Bob->Alice: First message

@enduml

@startuml

participant Bob << (C,#ADD1B2) >>
participant Alice << (C,#ADD1B2) >>

Bob->Alice: First message

@enduml

Guide de référence du langage PlantUML (1.2025.0) 27 / 580

1.33 Position of the stereotypes 1 DIAGRAMME DE SÉQUENCE

1.33 Position of the stereotypes
It is possible to define stereotypes position (top or bottom) with the command skinparam stereotypePosition.

1.33.1 Top postion (by default)

@startuml
skinparam stereotypePosition top

participant A<<st1>>
participant B<<st2>>
A --> B : stereo test
@enduml

1.33.2 Bottom postion

@startuml
skinparam stereotypePosition bottom

participant A<<st1>>
participant B<<st2>>
A --> B : stereo test
@enduml

[Ref. QA-18650]

1.34 Plus d’information sur les titres
Vous pouvez utiliser le formatage creole dans le titre.

@startuml

title __Simple__ **communication** example

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

@enduml

Guide de référence du langage PlantUML (1.2025.0) 28 / 580

1.34 Plus d’information sur les titres 1 DIAGRAMME DE SÉQUENCE

Vous pouvez mettre des retours à la ligne en utilisant \n dans la description.

@startuml

title __Simple__ communication example\non several lines

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

@enduml

Vous pouvez aussi mettre un titre sur plusieurs lignes à l’aide des mots-clé title et end title.

@startuml

title
<u>Simple</u> communication example
on <i>several</i> lines and using html
This is hosted by <img:sourceforge.jpg>

end title

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

@enduml

Guide de référence du langage PlantUML (1.2025.0) 29 / 580

1.35 Cadre pour les participants 1 DIAGRAMME DE SÉQUENCE

1.35 Cadre pour les participants
Il est possible de dessiner un cadre autour de certains participants, en utilisant les commandes box et
end box.

Vous pouvez ajouter un titre ou bien une couleur de fond après le mot-clé box.

@startuml

box "Internal Service" #LightBlue
participant Bob
participant Alice
end box
participant Other

Bob -> Alice : hello
Alice -> Other : hello

@enduml

1.36 Supprimer les participants en pied de page
Vous pouvez utiliser le mot-clé hide footbox pour supprimer la partie basse du diagramme.

@startuml

hide footbox
title Footer removed

Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

@enduml

1.37 Personnalisation
Utilisez la commande skinparam pour changer la couleur et la mise en forme du texte du schéma.

Vous pouvez utiliser cette commande :

• Dans la définition du diagramme, comme pour les autres commandes,

• Dans un fichier inclus,

Guide de référence du langage PlantUML (1.2025.0) 30 / 580

1.37 Personnalisation 1 DIAGRAMME DE SÉQUENCE

• Dans un fichier de configuration, renseigné dans la ligne de commande ou la tâche ANT.

Vous pouvez aussi modifier d’autres paramètres pour le rendu, comme le montrent les exemples suivants:

@startuml
skinparam sequenceArrowThickness 2
skinparam roundcorner 20
skinparam maxmessagesize 60
skinparam sequenceParticipant underline

actor User
participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C
C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml

@startuml
skinparam backgroundColor #EEEBDC
skinparam handwritten true

skinparam sequence {

Guide de référence du langage PlantUML (1.2025.0) 31 / 580

1.37 Personnalisation 1 DIAGRAMME DE SÉQUENCE

ArrowColor DeepSkyBlue
ActorBorderColor DeepSkyBlue
LifeLineBorderColor blue
LifeLineBackgroundColor #A9DCDF

ParticipantBorderColor DeepSkyBlue
ParticipantBackgroundColor DodgerBlue
ParticipantFontName Impact
ParticipantFontSize 17
ParticipantFontColor #A9DCDF

ActorBackgroundColor aqua
ActorFontColor DeepSkyBlue
ActorFontSize 17
ActorFontName Aapex
}

actor User
participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C
C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml

Guide de référence du langage PlantUML (1.2025.0) 32 / 580

1.38 Changer le padding 1 DIAGRAMME DE SÉQUENCE

1.38 Changer le padding
Il est possible de changer certains paramètres du padding.

@startuml
skinparam ParticipantPadding 20
skinparam BoxPadding 10

box "Foo1"
participant Alice1
participant Alice2
end box
box "Foo2"
participant Bob1
participant Bob2
end box
Alice1 -> Bob1 : hello
Alice1 -> Out : out
@enduml

1.39 Appendix: Examples of all arrow type
1.39.1 Normal arrow

@startuml
participant Alice as a
participant Bob as b
a -> b : ""-> ""
a ->> b : ""->> ""
a -\ b : ""-\ ""

Guide de référence du langage PlantUML (1.2025.0) 33 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SÉQUENCE

a -\\ b : ""-\\\\""
a -/ b : ""-/ ""
a -// b : ""-// ""
a ->x b : ""->x ""
a x-> b : ""x-> ""
a o-> b : ""o-> ""
a ->o b : ""->o ""
a o->o b : ""o->o ""
a <-> b : ""<-> ""
a o<->o b : ""o<->o""
a x<->x b : ""x<->x""
a ->>o b : ""->>o ""
a -\o b : ""-\o ""
a -\\o b : ""-\\\\o""
a -/o b : ""-/o ""
a -//o b : ""-//o ""
a x->o b : ""x->o ""
@enduml

1.39.2 Itself arrow

@startuml

Guide de référence du langage PlantUML (1.2025.0) 34 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SÉQUENCE

participant Alice as a
participant Bob as b
a -> a : ""-> ""
a ->> a : ""->> ""
a -\ a : ""-\ ""
a -\\ a : ""-\\\\""
a -/ a : ""-/ ""
a -// a : ""-// ""
a ->x a : ""->x ""
a x-> a : ""x-> ""
a o-> a : ""o-> ""
a ->o a : ""->o ""
a o->o a : ""o->o ""
a <-> a : ""<-> ""
a o<->o a : ""o<->o""
a x<->x a : ""x<->x""
a ->>o a : ""->>o ""
a -\o a : ""-\o ""
a -\\o a : ""-\\\\o""
a -/o a : ""-/o ""
a -//o a : ""-//o ""
a x->o a : ""x->o ""
@enduml

Guide de référence du langage PlantUML (1.2025.0) 35 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SÉQUENCE

1.39.3 Incoming and outgoing messages (with ’[’, ’]’)

1.39.4 Incoming messages (with ’[’)

@startuml
participant Alice as a
participant Bob as b
[-> b : ""[-> ""
[->> b : ""[->> ""

Guide de référence du langage PlantUML (1.2025.0) 36 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SÉQUENCE

[-\ b : ""[-\ ""
[-\\ b : ""[-\\\\""
[-/ b : ""[-/ ""
[-// b : ""[-// ""
[->x b : ""[->x ""
[x-> b : ""[x-> ""
[o-> b : ""[o-> ""
[->o b : ""[->o ""
[o->o b : ""[o->o ""
[<-> b : ""[<-> ""
[o<->o b : ""[o<->o""
[x<->x b : ""[x<->x""
[->>o b : ""[->>o ""
[-\o b : ""[-\o ""
[-\\o b : ""[-\\\\o""
[-/o b : ""[-/o ""
[-//o b : ""[-//o ""
[x->o b : ""[x->o ""
@enduml

Guide de référence du langage PlantUML (1.2025.0) 37 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SÉQUENCE

1.39.5 Outgoing messages (with ’]’)

@startuml
participant Alice as a
participant Bob as b
a ->] : ""->] ""
a ->>] : ""->>] ""
a -\] : ""-\] ""
a -\\] : ""-\\\\]""
a -/] : ""-/] ""
a -//] : ""-//] ""
a ->x] : ""->x] ""
a x->] : ""x->] ""
a o->] : ""o->] ""
a ->o] : ""->o] ""
a o->o] : ""o->o] ""
a <->] : ""<->] ""
a o<->o] : ""o<->o]""
a x<->x] : ""x<->x]""
a ->>o] : ""->>o] ""
a -\o] : ""-\o] ""
a -\\o] : ""-\\\\o]""
a -/o] : ""-/o] ""
a -//o] : ""-//o] ""
a x->o] : ""x->o] ""
@enduml

Guide de référence du langage PlantUML (1.2025.0) 38 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SÉQUENCE

1.39.6 Short incoming and outgoing messages (with ’?’)

1.39.7 Short incoming (with ’?’)

@startuml
participant Alice as a
participant Bob as b
a -> b : //Long long label//
?-> b : ""?-> ""
?->> b : ""?->> ""
?-\ b : ""?-\ ""
?-\\ b : ""?-\\\\""
?-/ b : ""?-/ ""
?-// b : ""?-// ""
?->x b : ""?->x ""
?x-> b : ""?x-> ""
?o-> b : ""?o-> ""
?->o b : ""?->o ""
?o->o b : ""?o->o ""
?<-> b : ""?<-> ""
?o<->o b : ""?o<->o""
?x<->x b : ""?x<->x""

Guide de référence du langage PlantUML (1.2025.0) 39 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SÉQUENCE

?->>o b : ""?->>o ""
?-\o b : ""?-\o ""
?-\\o b : ""?-\\\\o ""
?-/o b : ""?-/o ""
?-//o b : ""?-//o ""
?x->o b : ""?x->o ""
@enduml

1.39.8 Short outgoing (with ’?’)

@startuml
participant Alice as a
participant Bob as b
a -> b : //Long long label//
a ->? : ""->? ""
a ->>? : ""->>? ""
a -\? : ""-\? ""
a -\\? : ""-\\\\?""
a -/? : ""-/? ""
a -//? : ""-//? ""
a ->x? : ""->x? ""

Guide de référence du langage PlantUML (1.2025.0) 40 / 580

1.40 SkinParameter spécifique 1 DIAGRAMME DE SÉQUENCE

a x->? : ""x->? ""
a o->? : ""o->? ""
a ->o? : ""->o? ""
a o->o? : ""o->o? ""
a <->? : ""<->? ""
a o<->o? : ""o<->o?""
a x<->x? : ""x<->x?""
a ->>o? : ""->>o? ""
a -\o? : ""-\o? ""
a -\\o? : ""-\\\\o?""
a -/o? : ""-/o? ""
a -//o? : ""-//o? ""
a x->o? : ""x->o? ""
@enduml

1.40 SkinParameter spécifique
1.40.1 Par défaut

@startuml
Bob -> Alice : hello

Guide de référence du langage PlantUML (1.2025.0) 41 / 580

1.40 SkinParameter spécifique 1 DIAGRAMME DE SÉQUENCE

Alice -> Bob : ok
@enduml

1.40.2 LifelineStrategy

• nosolid (par défaut)

@startuml
skinparam lifelineStrategy nosolid
Bob -> Alice : hello
Alice -> Bob : ok
@enduml

[Ref. QA-9016]

• solid

Pour avoir une ligne de vie solide dans les diagrammes de séquence, vous pouvez utiliser : skinparam
lifelineStrategy solid

@startuml
skinparam lifelineStrategy solid
Bob -> Alice : hello
Alice -> Bob : ok
@enduml

[Ref. QA-2794]

1.40.3 style strictuml

Pour être conforme à l’UML strict(pour le style de flèche : émet un triangle plutôt que des pointes de
flèche pointues), vous pouvez utiliser

• skinparam style strictuml

@startuml
skinparam style strictuml
Bob -> Alice : hello

Guide de référence du langage PlantUML (1.2025.0) 42 / 580

1.41 Masquer un participant non lié 1 DIAGRAMME DE SÉQUENCE

Alice -> Bob : ok
@enduml

[Réf. QA-1047]

1.41 Masquer un participant non lié
Par défaut, tous les participants sont affichés

@startuml
participant Alice
participant Bob
participant Carol

Alice -> Bob : hello
@enduml

Mais vous pouvez hide unlinked participant

@startuml
hide unlinked
participant Alice
participant Bob
participant Carol

Alice -> Bob : hello
@enduml

[Réf. QA-4247]

1.42 Colorier un groupe de message
Il est possible de colorer un groupe de message

@startuml
Alice -> Bob: Authentication Request
alt#Gold #LightBlue Successful case

Bob -> Alice: Authentication Accepted
else #Pink Failure

Bob -> Alice: Authentication Rejected
end

Guide de référence du langage PlantUML (1.2025.0) 43 / 580

1.43 Mainframe 1 DIAGRAMME DE SÉQUENCE

@enduml

[Réf. QA-4750 et QA-6410]

1.43 Mainframe
@startuml
mainframe This is a **mainframe**
Alice->Bob : Hello
@enduml

[Ref. QA-4019 and Issue#148]

1.44 Slanted or odd arrows
You can use the (nn) option (before or after arrow) to make the arrows slanted, where nn is the number
of shift pixels.

[Available only after v1.2022.6beta+]

@startuml
A ->(10) B: text 10
B ->(10) A: text 10

A ->(10) B: text 10
A (10)<- B: text 10
@enduml

Guide de référence du langage PlantUML (1.2025.0) 44 / 580

1.44 Slanted or odd arrows 1 DIAGRAMME DE SÉQUENCE

@startuml
A ->(40) B++: Rq
B -->(20) A--: Rs
@enduml

[Ref. QA-14145]

@startuml
!pragma teoz true
A ->(50) C: Starts\nwhen 'B' sends
& B ->(25) C: \nBut B's message\n arrives before A's
@enduml

[Ref. QA-6684]

@startuml
!pragma teoz true

S1 ->(30) S2: msg 1\n
& S2 ->(30) S1: msg 2

note left S1: msg\nS2 to S1
& note right S2: msg\nS1 to S2

Guide de référence du langage PlantUML (1.2025.0) 45 / 580

1.45 Parallel messages (with teoz) 1 DIAGRAMME DE SÉQUENCE

@enduml

[Ref. QA-1072]

1.45 Parallel messages (with teoz)
You can use the & teoz command to display parallel messages:

@startuml
!pragma teoz true
Alice -> Bob : hello
& Bob -> Charlie : hi
@enduml

(See also Teoz architecture)

Guide de référence du langage PlantUML (1.2025.0) 46 / 580

2 DIAGRAMME DE CAS D’UTILISATION

2 Diagramme de cas d’utilisation
Un diagramme de cas d’utilisation est une représentation visuelle utilisée en ingénierie logicielle
pour décrire les interactions entre les acteurs du système et le système lui-même. Il capture le
comportement dynamique d’un système en illustrant ses cas d’utilisation et les rôles qui interagissent
avec eux. Ces diagrammes sont essentiels pour spécifier les exigences fonctionnelles du système et
comprendre comment les utilisateurs interagiront avec le système. En fournissant une vue de haut niveau,
les diagrammes de cas d’utilisation aident les parties prenantes à comprendre la fonctionnalité du système
et sa valeur potentielle.

PlantUML offre une approche unique pour créer des diagrammes de cas d’utilisation grâce à son langage
textuel. L’un des principaux avantages de l’utilisation de PlantUML est sa simplicité et son efficacité.
Au lieu de dessiner manuellement des formes et des connexions, les utilisateurs peuvent définir leurs dia-
grammes à l’aide de descriptions textuelles intuitives et concises. Cela permet non seulement d’accélérer
le processus de création des diagrammes, mais aussi d’en assurer la cohérence et la précision. La
capacité à s’intégrer à diverses plateformes de documentation et sa large gamme de formats de sortie sup-
portés font de PlantUML un outil polyvalent pour les développeurs comme pour les non-développeurs.
Enfin, comme il s’agit d’un logiciel libre, PlantUML peut se vanter d’avoir une forte communauté qui
contribue continuellement à son amélioration et offre une richesse de ressources pour les utilisateurs à
tous les niveaux.

2.1 Cas d’utilisation
Les cas d’utilisation sont mis entre parenthèses (car deux parenthèses forment un ovale).

Vous pouvez aussi utiliser le mot-clé usecase pour définir un cas d’utilisation. Et vous pouvez définir un
alias avec le mot-clé as. Cet alias sera ensuite utilisé lors de la définition des relations.

@startuml

(First usecase)
(Another usecase) as (UC2)
usecase UC3
usecase (Last\nusecase) as UC4

@enduml

2.2 Acteurs
Le nom définissant un acteur est placé entre deux points.

Vous pouvez également utiliser le mot-clé actor pour définir un acteur. Un alias peut être attribué à
l’aide du mot-clé as et peut être utilisé ultérieurement à la place du nom de l’acteur, par exemple lors
de la définition des relations.

Les exemples suivants montrent que la définition des acteurs est facultative.

@startuml

:First Actor:
:Another\nactor: as Man2
actor Woman3
actor :Last actor: as Person1

Guide de référence du langage PlantUML (1.2025.0) 47 / 580

2.3 Changer le style d’acteur 2 DIAGRAMME DE CAS D’UTILISATION

@enduml

2.3 Changer le style d’acteur
Vous pouvez changer le style d’acteur de stick man (par défaut) à :

• un awesome man avec la commande skinparam actorStyle awesome;

• un hollow man avec la commande skinparam actorStyle hollow .

2.3.1 Stick man (par défaut)

@startuml
:User: --> (Use)
"Main Admin" as Admin
"Use the application" as (Use)
Admin --> (Admin the application)
@enduml

Un==== homme impressionnant ====

@startuml
skinparam actorStyle awesome
:User: --> (Use)
"Main Admin" as Admin
"Use the application" as (Use)
Admin --> (Admin the application)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 48 / 580

2.4 Description des cas d’utilisation 2 DIAGRAMME DE CAS D’UTILISATION

[Réf. QA-10493]

2.3.2 Homme creux

@startuml
skinparam actorStyle Hollow
:User: --> (Use)
"Main Admin" as Admin
"Use the application" as (Use)
Admin --> (Admin the application)
@enduml

[Réf. PR#396]

2.4 Description des cas d’utilisation
Si vous voulez une description sur plusieurs lignes, vous pouvez utiliser des guillemets.

Vous pouvez aussi utiliser les séparateurs suivants: -- .. == __. Et vous pouvez mettre un titre dans les
séparateurs.

@startuml

usecase UC1 as "You can use
several lines to define your usecase.
You can also use separators.
--
Several separators are possible.
==
And you can add titles:
..Conclusion..
This allows large description."

@enduml

Guide de référence du langage PlantUML (1.2025.0) 49 / 580

2.5 Utiliser un package 2 DIAGRAMME DE CAS D’UTILISATION

2.5 Utiliser un package
Vous pouvez utiliser des packages pour regrouper des acteurs ou des cas d’utilisation

@startuml
left to right direction
actor Guest as g
package Professional {

actor Chef as c
actor "Food Critic" as fc

}
package Restaurant {

usecase "Eat Food" as UC1
usecase "Pay for Food" as UC2
usecase "Drink" as UC3
usecase "Review" as UC4

}
fc --> UC4
g --> UC1
g --> UC2
g --> UC3
@enduml

Vous pouvez utiliser rectangle pour modifier l’affichage du paquet

@startuml
left to right direction

Guide de référence du langage PlantUML (1.2025.0) 50 / 580

2.6 Exemples très simples 2 DIAGRAMME DE CAS D’UTILISATION

actor "Food Critic" as fc
rectangle Restaurant {

usecase "Eat Food" as UC1
usecase "Pay for Food" as UC2
usecase "Drink" as UC3

}
fc --> UC1
fc --> UC2
fc --> UC3
@enduml

2.6 Exemples très simples
Pour lier les acteurs et les cas d’utilisation, la flèche --> est utilisée.

Plus il y a de tirets - dans la flèche, plus elle sera longue. Vous pouvez ajouter un libellé sur la flèche, en
ajoutant un caractère : dans la définition de la flèche.

Dans cet exemple, vous voyez que User n’a pas été défini préalablement, et qu’il est implicitement reconnu
comme acteur.

@startuml

User -> (Start)
User --> (Use the application) : A small label

:Main Admin: ---> (Use the application) : This is\nyet another\nlabel

@enduml

Guide de référence du langage PlantUML (1.2025.0) 51 / 580

2.7 Héritage 2 DIAGRAMME DE CAS D’UTILISATION

2.7 Héritage
Si un acteur ou un cas d’utilisation en étend un autre, vous pouvez utiliser le symbole <|--.

@startuml
:Main Admin: as Admin
(Use the application) as (Use)

User <|-- Admin
(Start) <|-- (Use)

@enduml

2.8 Notes
Vous pouvez utiliser les mots clés note left of , note right of , note top of , note bottom of pour
définir les notes en relation avec un objet.

Une note peut également être définie seule avec des mots-clés, puis liée à d’autres objets en utilisant le
symbole .. .

@startuml
:Main Admin: as Admin
(Use the application) as (Use)

User -> (Start)
User --> (Use)

Admin ---> (Use)

note right of Admin : This is an example.

note right of (Use)
A note can also
be on several lines

end note

note "This note is connected\nto several objects." as N2
(Start) .. N2
N2 .. (Use)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 52 / 580

2.9 Stéréotypes 2 DIAGRAMME DE CAS D’UTILISATION

2.9 Stéréotypes
Vous pouvez ajouter des stéréotypes à la définition des acteurs et des cas d’utilisation avec << et >>.

@startuml
User << Human >>
:Main Database: as MySql << Application >>
(Start) << One Shot >>
(Use the application) as (Use) << Main >>

User -> (Start)
User --> (Use)

MySql --> (Use)

@enduml

2.10 Changer les directions des flèches
Par défaut, les liens entre les classes ont deux tirets -- et sont orientés verticalement. Il est possible de
mettre des liens horizontaux en mettant un seul tiret (ou un point) comme ceci:

@startuml
:user: --> (Use case 1)
:user: -> (Use case 2)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 53 / 580

2.11 Découper les diagrames 2 DIAGRAMME DE CAS D’UTILISATION

Vous pouvez aussi changer le sens en renversant le lien :

@startuml
(Use case 1) <.. :user:
(Use case 2) <- :user:
@enduml

Il est possible de changer la direction d’une flèche en utilisant les mots-clé left, right, up ou down à
l’intérieur de la flèche :

@startuml
:user: -left-> (dummyLeft)
:user: -right-> (dummyRight)
:user: -up-> (dummyUp)
:user: -down-> (dummyDown)
@enduml

Vous pouvez abréger les noms des flèches en indiquant seulement le premier caractère de la direction (par
exemple -d- pour -down-) ou les deux premiers caractères (-do-).

Il est conseillé de ne pas abuser de cette fonctionnalité : Graphviz qui donne d’assez bon résultats quoique
non ”garantis”.

2.11 Découper les diagrames
Le mot-clé newpage est utilisé pour découper un diagrame en plusieurs images.

@startuml

Guide de référence du langage PlantUML (1.2025.0) 54 / 580

2.12 De droite à gauche 2 DIAGRAMME DE CAS D’UTILISATION

:actor1: --> (Usecase1)
newpage
:actor2: --> (Usecase2)
@enduml

2.12 De droite à gauche
Le comportement général de construction des diagrammes est de haut en bas.

@startuml
'default
top to bottom direction
user1 --> (Usecase 1)
user2 --> (Usecase 2)

@enduml

Il est possible de changer pour aller plutôt de la droite vers la gauche avec la commande left to right
direction. Le résultat est parfois meilleur dans ce cas.

@startuml

left to right direction
user1 --> (Usecase 1)
user2 --> (Usecase 2)

@enduml

See also ’Change diagram orientation’ on [Deployment diagram](deployment-diagram) page.

Guide de référence du langage PlantUML (1.2025.0) 55 / 580

2.13 La commande Skinparam 2 DIAGRAMME DE CAS D’UTILISATION

2.13 La commande Skinparam
Utilisez la commande skinparam pour changer la couleur et la mise en forme du texte du schéma.

Vous pouvez utiliser cette commande :

• Dans la définition du diagramme, comme pour les autres commandes,

• Dans un fichier inclus,

• Dans un fichier de configuration, renseigné dans la ligne de commande ou la tâche ANT.

Vous pouvez aussi spécifier les polices et les couleurs pour les acteurs et cas d’utilisation avec des stéréo-
types.

@startuml
skinparam handwritten true

skinparam usecase {
BackgroundColor DarkSeaGreen
BorderColor DarkSlateGray

BackgroundColor<< Main >> YellowGreen
BorderColor<< Main >> YellowGreen

ArrowColor Olive
ActorBorderColor black
ActorFontName Courier

ActorBackgroundColor<< Human >> Gold
}

User << Human >>
:Main Database: as MySql << Application >>
(Start) << One Shot >>
(Use the application) as (Use) << Main >>

User -> (Start)
User --> (Use)

MySql --> (Use)

@enduml

2.14 Exemple complet
@startuml
left to right direction
skinparam packageStyle rectangle
actor customer

Guide de référence du langage PlantUML (1.2025.0) 56 / 580

2.15 Business Use Case 2 DIAGRAMME DE CAS D’UTILISATION

actor clerk
rectangle checkout {

customer -- (checkout)
(checkout) .> (payment) : include
(help) .> (checkout) : extends
(checkout) -- clerk

}
@enduml

2.15 Business Use Case
Vous pouvez ajouter / pour créer un Business Use Case.

2.15.1 Business Use Case

@startuml

(First usecase)/
(Another usecase)/ as (UC2)
usecase/ UC3
usecase/ (Last\nusecase) as UC4

@enduml

2.15.2 Acteur commercial

@startuml

:First Actor:/
:Another\nactor:/ as Man2
actor/ Woman3
actor/ :Last actor: as Person1

@enduml

Guide de référence du langage PlantUML (1.2025.0) 57 / 580

2.16 Modifier la couleur et le style des flèches (style en ligne)2 DIAGRAMME DE CAS D’UTILISATION

[Réf. QA-12179]

2.16 Modifier la couleur et le style des flèches (style en ligne)
Vous pouvez modifier la couleur ou le style des flèches individuelles en utilisant la notation suivante en
ligne

• #color;line.[bold|dashed|dotted];text:color

@startuml
actor foo
foo --> (bar) : normal
foo --> (bar1) #line:red;line.bold;text:red : red bold
foo --> (bar2) #green;line.dashed;text:green : green dashed
foo --> (bar3) #blue;line.dotted;text:blue : blue dotted
@enduml

[Réf. QA-3770 et QA-3816] [Voir une fonctionnalité similaire sur le diagramme de déploiement ou le
diagramme de classes]

2.17 Modifier la couleur et le style d’un élément (style en ligne)
Vous pouvez modifier la couleur ou le style d’un élément individuel en utilisant la notation suivante

• #[color|back:color];line:color;line.[bold|dashed|dotted];text:color

@startuml
actor a
actor b #pink;line:red;line.bold;text:red
usecase c #palegreen;line:green;line.dashed;text:green
usecase d #aliceblue;line:blue;line.dotted;text:blue
@enduml

Guide de référence du langage PlantUML (1.2025.0) 58 / 580

2.18 Afficher les données JSON sur le diagramme Usecase2 DIAGRAMME DE CAS D’UTILISATION

[Réf. QA-5340 et adapté de QA-6852]

2.18 Afficher les données JSON sur le diagramme Usecase
2.18.1 Exemple simple

@startuml
allowmixing

actor Actor
usecase Usecase

json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-15481]

Pour un autre exemple, voir la page JSON.

Guide de référence du langage PlantUML (1.2025.0) 59 / 580

3 DIAGRAMME DE CLASSES

3 Diagramme de classes
Les diagrammes de classes sont conçus à l’aide d’une syntaxe qui reflète celle traditionnellement employée
dans les langages de programmation. Cette ressemblance favorise un environnement familier pour les
développeurs, facilitant ainsi un processus de création de diagrammes plus facile et plus intuitif.

Cette approche de la conception est non seulement succincte, mais elle permet également de créer des
représentations à la fois concises et expressives. De plus, elle permet la représentation des relations entre
les classes à travers une syntaxe qui fait écho à celle des diagrammes de séquence, ouvrant la voie à une
représentation fluide et perspicace des interactions entre les classes.

Au-delà des représentations structurelles et relationnelles, la syntaxe des diagrammes de classes sup-
porte d’autres enrichissements tels que l’inclusion de notes et l’application de couleurs, permettant aux
utilisateurs de créer des diagrammes qui sont à la fois informatifs et visuellement attrayants.

Vous pouvez en apprendre plus sur certaines des commandes communes dans PlantUML pour améliorer
votre expérience de création de diagrammes.

3.1 Élément déclaratif
@startuml
abstract abstract
abstract class "abstract class"
annotation annotation
circle circle
() circle_short_form
class class
class class_stereo <<stereotype>>
diamond diamond
<> diamond_short_form
entity entity
enum enum
exception exception
interface interface
metaclass metaclass
protocol protocol
stereotype stereotype
struct struct
@enduml

Guide de référence du langage PlantUML (1.2025.0) 60 / 580

3.2 Relations entre classes 3 DIAGRAMME DE CLASSES

[Réf. pour protocol et struct: GH-1028, pour exception: QA-16258]

3.2 Relations entre classes
Les relations entre les classes sont définies en utilisant les symboles suivants :

Type Symbole Objectif
Extension <|-- Spécialisation d’une classe dans une hiérarchie
Implémentation <|.. Réalisation d’une interface par une classe
Composition *-- La partie ne peut exister sans le tout
Agrégation o-- La partie peut exister indépendamment du tout
Dépendance --> L’objet utilise un autre objet
Dépendance ..> Une forme plus faible de dépendance

Il est possible de substituer -- par .. pour obtenir une ligne en pointillée.

Grâce à ces règles, il est possible de faire les diagrammes suivants :

@startuml
Class01 <|-- Class02
Class03 *-- Class04
Class05 o-- Class06
Class07 .. Class08
Class09 -- Class10
@enduml

@startuml
Class11 <|.. Class12
Class13 --> Class14
Class15 ..> Class16
Class17 ..|> Class18
Class19 <--* Class20
@enduml

@startuml
Class21 #-- Class22
Class23 x-- Class24
Class25 }-- Class26
Class27 +-- Class28
Class29 ^-- Class30
@enduml

Guide de référence du langage PlantUML (1.2025.0) 61 / 580

3.3 Libellés sur les relations 3 DIAGRAMME DE CLASSES

3.3 Libellés sur les relations
Il est possible de rajouter un libellé sur une relation, en utilisant les deux points :, suivi du texte du
libellé.

Pour les cardinalité, vous pouvez utiliser des guillemets "" des deux cotés de la relation.

@startuml
Class01 "1" *-- "many" Class02 : contains

Class03 o-- Class04 : aggregation

Class05 --> "1" Class06
@enduml

Vous pouvez ajouter une flèche désignant quel objet agit sur l’autre en utilisant < ou > au début ou à la
fin du libellé.

@startuml
class Car

Driver - Car : drives >
Car *- Wheel : have 4 >
Car -- Person : < owns

@enduml

Guide de référence du langage PlantUML (1.2025.0) 62 / 580

3.4 Caractères non alphabétiques dans les noms d’éléments et les étiquettes de relations3 DIAGRAMME DE CLASSES

3.4 Caractères non alphabétiques dans les noms d’éléments et les étiquettes
de relations

Si vous voulez utiliser autre chose que des lettres dans les noms des classes (ou les enums...), vous pouvez
:

• Utiliser le mot-clé as dans la définition de la classe

• Metter des guillemets "" autour du nom de la classe

@startuml
class "Voici ma classe" as classe1
class classe2 as "Cette façon fonctionne aussi"

classe2 *-- "machin/truc" : utilise
@enduml

Si un alias est assigné à un élément, le reste du fichier doit se référer à cet élément par cet alias et non
son nom.

3.4.1 Commencer un nom avec $

Note : les noms qui commencent par $ ne peuvent pas être cachés ou supprimés par après, parce que
les commandes hide et remove les considéreront comme une $etiquette et non comme un nom de
composant. Pour supprimer de tels éléments, ils doivent avoir un alias ou une étiquette.

@startuml
class $C1
class $C2 $C2
class "$C2" as dollarC2
remove $C1
remove $C2
remove dollarC2
@enduml

Notez aussi que les noms qui commencent par $ sont valides, mais que pour assigner un alias à un tel
élément le nom doit être entre guillemets "".

3.5 Ajouter des méthodes
Pour déclarer des méthodes ou des champs, vous pouvez utiliser le caractère : suivi de la méthode ou
du champ.

Le système utilise la présence de parenthèses pour choisir entre méthodes et champs.

@startuml
Object <|-- ArrayList

Object : equals()

Guide de référence du langage PlantUML (1.2025.0) 63 / 580

3.6 Définition de la visibilité 3 DIAGRAMME DE CLASSES

ArrayList : Object[] elementData
ArrayList : size()

@enduml

Il est possible de regrouper tous les champs et méthodes en utilisant des crochets {}.

Notez que la syntaxe est très souple sur l’ordre des champs et des méthodes.

@startuml
class Dummy {

String data
void methods()

}

class Flight {
flightNumber : Integer
departureTime : Date

}
@enduml

You can use {field} and {method} modifiers to override default behaviour of the parser about fields
and methods.

@startuml
class Dummy {

{field} A field (despite parentheses)
{method} Some method

}

@enduml

3.6 Définition de la visibilité
Lorsque vous définissez des méthodes ou des champs, vous pouvez utiliser des caractères pour définir la
visibilité de l’élément correspondant

Guide de référence du langage PlantUML (1.2025.0) 64 / 580

3.6 Définition de la visibilité 3 DIAGRAMME DE CLASSES

Caractère Icône pour le champ Icône de la méthode Visibilité
- private
protected
~ package private
+ public

@startuml

class Machin {
-champ1
#champ2
~methode1()
+methode2()

}

@enduml

Vous pouvez désactiver cette fonctionnalité à l’aide de la commande skinparam classAttributeIconSize
0:

@startuml
skinparam classAttributeIconSize 0
class Machin {
-champ1
#champ2
~methode1()
+methode2()

}

@enduml

Les indicateurs de visibilité sont facultatifs et peuvent être omis individuellement sans désactiver les
icônes globalement à l’aide de skinparam classAttributeIconSize 0.

@startuml
class Machin {
champ1
champ2
methode1()
methode2()

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 65 / 580

3.7 Abstrait et statique 3 DIAGRAMME DE CLASSES

Dans le cas où vous voudriez utiliser des méthodes ou champs qui commencent par l’un des caractères
-, #, ~ ou +, échappez le premier caractère avec \. C’est utile dans certains langages, par exemple pour
définir le destructeur de la classe Machin : () :

@startuml
class Machin {
champ1
\~Machin()
methode1()

}
@enduml

[Ref. [QA-4755](https://forum.plantuml.net/4755/provide-display-visibility-attributes-private-protected)]

3.7 Abstrait et statique
Vous pouvez définir une méthode statique ou abstraite ou un champ utilisant {static} ou {abstract}
modificateur.

Ce modificateur peut être utilisé au début ou à la fin de la ligne. Vous pouvez alors utiliser {classifier}
plutôt que {static}.

@startuml
class Dummy {

{static} String id
{abstract} void methods()

}
@enduml

3.8 Corps de classe avancé
Par défaut, méthodes et champs sont automatiquement regroupés par PlantUML. Vous pouvez utiliser
un séparateur pour définir votre propre manière d’ordonner les champs et les méthodes. Les séparateurs
suivants sont possibles : -- .. == __.

Vous pouvez aussi utiliser les titres dans les séparateurs.

@startuml
class Foo1 {

You can use
several lines
..

Guide de référence du langage PlantUML (1.2025.0) 66 / 580

3.9 Notes et stéréotypes 3 DIAGRAMME DE CLASSES

as you want
and group
==
things together.
__
You can have as many groups
as you want
--
End of class

}

class User {
.. Simple Getter ..
+ getName()
+ getAddress()
.. Some setter ..
+ setName()
__ private data __
int age
-- encrypted --
String password

}
@enduml

3.9 Notes et stéréotypes
Stéréotypes sont définies avec le mot clé class, << et >>.

Vous pouvez aussi définir une note en utilisant les mots clés note left of , note right of , note top
of , note bottom of.

Vous pouvez aussi définir une note sur la dernière classe utilisant note left, note right, note top,
note bottom.

Une note peut aussi être définie le mot clé note, puis être lié à un autre objet en utilisant le symbole ...

@startuml
class Object << general >>
Object <|--- ArrayList

note top of Object : In java, every class\nextends this one.

note "This is a floating note" as N1
note "This note is connected\nto several objects." as N2
Object .. N2
N2 .. ArrayList

class Foo

Guide de référence du langage PlantUML (1.2025.0) 67 / 580

3.10 Plus de notes 3 DIAGRAMME DE CLASSES

note left: On last defined class

@enduml

3.10 Plus de notes
Il est également possible d’utiliser quelques balises HTML (voir expression créole) comme

•

• <u>

• <i>

• <s> , , <strike>

• ou

• <color:#AAAAAA> ou <color:colorName>

• <size:nn> pour changer la taille de la police

• ou <img:file>: le fichier doit être accessible par le système de fichiers

Vous pouvez aussi avoir une note sur plusieurs lignes.

Vous pouvez aussi définir une note sur la dernière classe définie en utilisant note left, note right,
note top , note bottom

@startuml

class Foo
note left: On last defined class

note top of Foo
In java, <size:18>every</size> <u>class</u>
extends
<i>this</i> one.

end note

note as N1
This note is <u>also</u>
<color:royalBlue>on several</color>
<s>words</s> lines

Guide de référence du langage PlantUML (1.2025.0) 68 / 580

3.11 Note sur un champ (champ, attribut, membre) ou une méthode 3 DIAGRAMME DE CLASSES

And this is hosted by <img:sourceforge.jpg>
end note

@enduml

3.11 Note sur un champ (champ, attribut, membre) ou une méthode
Il est possible d’ajouter une note sur un champ (champ, attribut, membre) ou une méthode.

3.11.1 Note sur un champ ou une méthode

@startuml
class A {
{static} int counter
+void {abstract} start(int timeout)
}
note right of A::counter

This member is annotated
end note
note right of A::start

This method is now explained in a UML note
end note
@enduml

3.11.2 Note sur une méthode de même nom

@startuml
class A {
{static} int counter
+void {abstract} start(int timeoutms)
+void {abstract} start(Duration timeout)
}
note left of A::counter

This member is annotated
end note
note right of A::"start(int timeoutms)"

This method with int
end note
note right of A::"start(Duration timeout)"

This method with Duration
end note
@enduml

Guide de référence du langage PlantUML (1.2025.0) 69 / 580

3.12 Note sur les liens 3 DIAGRAMME DE CLASSES

[Réf. QA-3474 et QA-5835]

3.12 Note sur les liens
Il est possible d’ajouter une note sur un lien, juste après la définition d’un lien, utiliser note on link.

Vous pouvez aussi utiliser note left on link, note right on link, note top on link, note bottom
on link si vous voulez changer la position relative de la note avec l’étiquette.

@startuml

class Dummy
Dummy --> Foo : A link
note on link #red: note that is red

Dummy --> Foo2 : Another link
note right on link #blue
this is my note on right link
and in blue
end note

@enduml

3.13 Classe et interface abstraites
Vous pouvez déclarer une classe abstraite à l’aide des mots-clés abstract ou abstract class.

La classe sera imprimée en italique.

Vous pouvez également utiliser les mots-clés interface, annotation et enum

@startuml

abstract class AbstractList
abstract AbstractCollection
interface List
interface Collection

List <|-- AbstractList
Collection <|-- AbstractCollection

Collection <|- List
AbstractCollection <|- AbstractList

Guide de référence du langage PlantUML (1.2025.0) 70 / 580

3.14 Masquer les attributs et les méthodes 3 DIAGRAMME DE CLASSES

AbstractList <|-- ArrayList

class ArrayList {
Object[] elementData
size()

}

enum TimeUnit {
DAYS
HOURS
MINUTES

}

annotation SuppressWarnings

annotation Annotation {
annotation with members
String foo()
String bar()

}

@enduml

[Ref. ’Annotation with members’Issue#458]

3.14 Masquer les attributs et les méthodes
Vous pouvez paramétrer l’affichage des classes à l’aide de la commande hide/show .

La commande de base est: hide empty members. Cette commande va masquer la zone des champs ou
des méthodes si celle-ci est vide.

A la place de empty members, vous pouvez utiliser:

• empty fields ou empty attributes pour des champs vides,

• empty methods pour des méthodes vides,

• fields or attributes qui masque les champs, même s’il y en a de définis,

Guide de référence du langage PlantUML (1.2025.0) 71 / 580

3.15 Masquer les classes 3 DIAGRAMME DE CLASSES

• methods qui masque les méthodes, même s’il y en a de définies,

• members qui masque les méthodes ou les champs, même s’il y en a de définies,

• circle pour le caractère entouré en face du nom de la classe,

• stereotype pour le stéréotype.

Vous pouvez aussi fournir, juste après le mot-clé hide ou show :

• class pour toutes les classes,

• interface pour toutes les interfaces,

• enum pour tous les enums,

• <<foo1>> pour les classes qui sont stéréotypée avec foo1,

• Un nom de classe existant

Vous pouvez utiliser plusieurs commandes show/hide pour définir des règles et des exceptions.

@startuml

class Dummy1 {
+myMethods()

}

class Dummy2 {
+hiddenMethod()

}

class Dummy3 <<Serializable>> {
String name
}

hide members
hide <<Serializable>> circle
show Dummy1 methods
show <<Serializable>> fields

@enduml

[Ref. [QA-2913](https://forum.plantuml.net/2913/hiding-based-on-visibilty?show=2916#a2916)]

3.15 Masquer les classes
Vous pouvez également utiliser les commandes show/hide pour masquer les classes.

Cela peut être utile si vous définissez un grand fichier !inclus, et si vous voulez masquer certaines classes
après l’inclusion du fichier

@startuml

class Foo1

Guide de référence du langage PlantUML (1.2025.0) 72 / 580

3.16 Supprimer des classes 3 DIAGRAMME DE CLASSES

class Foo2

Foo2 *-- Foo1

hide Foo2

@enduml

3.16 Supprimer des classes
Vous pouvez également utiliser les commandes remove pour supprimer des classes.

Cela peut être utile si vous définissez un grand fichier !inclus, et si vous voulez supprimer certaines classes
après l’inclusion du fichier

@startuml

class Foo1
class Foo2

Foo2 *-- Foo1

remove Foo2

@enduml

3.17 Hide, Remove or Restore tagged element or wildcard
You can put $tags (using $) on elements, then remove, hide or restore components either individually
or by tags.

By default, all components are displayed:

@startuml
class C1 $tag13
enum E1
interface I1 $tag13
C1 -- I1
@enduml

Guide de référence du langage PlantUML (1.2025.0) 73 / 580

3.17 Hide, Remove or Restore tagged element or wildcard 3 DIAGRAMME DE CLASSES

But you can:

• hide $tag13 components:

@startuml
class C1 $tag13
enum E1
interface I1 $tag13
C1 -- I1

hide $tag13
@enduml

• or remove $tag13 components:

@startuml
class C1 $tag13
enum E1
interface I1 $tag13
C1 -- I1

remove $tag13
@enduml

• or remove $tag13 and restore $tag1 components:

@startuml
class C1 $tag13 $tag1
enum E1
interface I1 $tag13
C1 -- I1

remove $tag13
restore $tag1
@enduml

• or remove * and restore $tag1 components:

@startuml
class C1 $tag13 $tag1
enum E1
interface I1 $tag13
C1 -- I1

remove *
restore $tag1

Guide de référence du langage PlantUML (1.2025.0) 74 / 580

3.18 Masquer ou supprimer une classe non liée 3 DIAGRAMME DE CLASSES

@enduml

3.18 Masquer ou supprimer une classe non liée
Par défaut, toutes les classes sont affichées

@startuml
class C1
class C2
class C3
C1 -- C2
@enduml

Mais vous pouvez :

• hide @unlinked classes

@startuml
class C1
class C2
class C3
C1 -- C2

hide @unlinked
@enduml

• ou remove @unlinked classes

@startuml
class C1
class C2
class C3
C1 -- C2

remove @unlinked
@enduml

Guide de référence du langage PlantUML (1.2025.0) 75 / 580

3.19 Utilisation de la généricité 3 DIAGRAMME DE CLASSES

[Adapté de QA-11052]

3.19 Utilisation de la généricité
Vous pouvez aussi utiliser les signes inférieur < et supérieur > pour définir l’utilisation de la généricité
dans une classe.

@startuml

class Foo<? extends Element> {
int size()

}
Foo *- Element

@enduml

On peut désactiver ce comportement avec la commande skinparam genericDisplay old.

3.20 Caractère spécial
Normalement, un caractère (C, I, E ou A) est utilisé pour les classes, les interfaces ou les énum.

Vous pouvez aussi utiliser le caractère de votre choix, en définissant le stéréotype et en ajoutant une
couleur, comme par exemple :

@startuml

class System << (S,#FF7700) Singleton >>
class Date << (D,orchid) >>
@enduml

3.21 Packages
Vous pouvez définir un package en utilisant le mot-clé package, et optionnellement déclarer une couleur
de fond pour votre package (en utilisant un code couleur HTML ou son nom).

Notez que les définitions de packages peuvent être imbriquées.

@startuml

package "Classic Collections" #DDDDDD {
Object <|-- ArrayList

}

Guide de référence du langage PlantUML (1.2025.0) 76 / 580

3.22 Modèle de paquet 3 DIAGRAMME DE CLASSES

package net.sourceforge.plantuml {
Object <|-- Demo1
Demo1 *- Demo2

}

@enduml

3.22 Modèle de paquet
Il y a différents styles de paquets disponibles.

Vous pouvez les spécifier chacun par un réglage par défaut avec la commande : skinparam packageStyle,
ou par l’utilisation d’un stéréotype sur le paquet:

@startuml
scale 750 width
package foo1 <<Node>> {

class Class1
}

package foo2 <<Rectangle>> {
class Class2

}

package foo3 <<Folder>> {
class Class3

}

package foo4 <<Frame>> {
class Class4

}

package foo5 <<Cloud>> {
class Class5

}

package foo6 <<Database>> {
class Class6

}

@enduml

Guide de référence du langage PlantUML (1.2025.0) 77 / 580

3.23 Les espaces de nommage 3 DIAGRAMME DE CLASSES

Vous pouvez aussi définir les liens entre les paquets, comme dans l’exemple suivant :

@startuml

skinparam packageStyle rectangle

package foo1.foo2 {
}

package foo1.foo2.foo3 {
class Object

}

foo1.foo2 +-- foo1.foo2.foo3

@enduml

3.23 Les espaces de nommage
Avec les packages, le nom de la classe est l’identifiant unique de la classe. Cela signifie qu’on ne peux pas
avoir deux classes avec le même nom dans deux packages différents. Pour ce faire, vous devez utiliser des
espace de nommage (namespace) à la place des packages.

Vous pouvez faire référence à des classes d’autres espace de nommage en les nommant complétement.
Les classes de l’espace de nommage par défaut (racine) sont nommées en commençant par un point.

Il n’est pas obligatoire de créer les espaces de nom. Un classe avec son nom complet sera automatiquement
ajoutée au bon espace de nommage.

@startuml

class BaseClass

namespace net.dummy #DDDDDD {
.BaseClass <|-- Person
Meeting o-- Person

Guide de référence du langage PlantUML (1.2025.0) 78 / 580

3.24 Creation automatique d’espace de nommage 3 DIAGRAMME DE CLASSES

.BaseClass <|- Meeting
}

namespace net.foo {
net.dummy.Person <|- Person
.BaseClass <|-- Person

net.dummy.Meeting o-- Person
}

BaseClass <|-- net.unused.Person

@enduml

There won’t be any difference between namespaces and packages anymore: both keywords are now
synonymous.

3.24 Creation automatique d’espace de nommage
Vous pouvez définir une autre séparateur (autre que le point) en utilisant la commande : set namespaceSeparator
???.

@startuml

set namespaceSeparator ::
class X1::X2::foo {

some info
}

@enduml

Guide de référence du langage PlantUML (1.2025.0) 79 / 580

3.25 Interface boucle 3 DIAGRAMME DE CLASSES

Vous pouvez désactiver la création automatique de package en utilisant la commande set namespaceSeparator
none.

@startuml

set namespaceSeparator none
class X1.X2.foo {

some info
}

@enduml

3.25 Interface boucle
Vous pouvez aussi rajouter des interfaces sur les classes avec la syntaxe suivante:

• bar ()- foo

• bar ()-- foo

• foo -() bar

@startuml
class foo
bar ()- foo
@enduml

3.26 Changer la direction
Par défaut, les liens entre les classe ont deux tirets -- et sont orientés verticalement. Il est possible
d’utiliser une ligne horizontal en mettant un simple tiret (Ou un point) comme ceci:

@startuml
Room o- Student
Room *-- Chair
@enduml

Vous pouvez aussi changer le sens en renversant le lien :

@startuml
Student -o Room
Chair --* Room
@enduml

Guide de référence du langage PlantUML (1.2025.0) 80 / 580

3.26 Changer la direction 3 DIAGRAMME DE CLASSES

Il est aussi possible de changer la direction d’une flèche en ajoutant les mots clés left, right, up ou down
à l’intérieur de la flèche:

@startuml
foo -left-> dummyLeft
foo -right-> dummyRight
foo -up-> dummyUp
foo -down-> dummyDown
@enduml

Il est possible de raccourcir la flèche en n’utilisant que la première lettre de la direction (par exemple,
-d- au lieu de -down-) ou les deux premières lettres (-do-)

Attention à ne pas abuser de cette fonctionnalité : GraphViz donne généralement de bons résultats sans
trop de raffistolages.

Et avec le paramètre left to right direction:

@startuml
left to right direction
foo -left-> dummyLeft
foo -right-> dummyRight
foo -up-> dummyUp
foo -down-> dummyDown
@enduml

Guide de référence du langage PlantUML (1.2025.0) 81 / 580

3.27 Classes d’association 3 DIAGRAMME DE CLASSES

3.27 Classes d’association
Vous pouvez définir une classe d’association après qu’une relation ait été définie entre deux classes, comme
dans l’exemple suivant:

@startuml
class Student {

Name
}
Student "0..*" - "1..*" Course
(Student, Course) .. Enrollment

class Enrollment {
drop()
cancel()

}
@enduml

Vous pouvez la définir dans une autre direction :

@startuml
class Student {

Name
}
Student "0..*" -- "1..*" Course
(Student, Course) . Enrollment

class Enrollment {
drop()
cancel()

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 82 / 580

3.28 Association sur la même classe 3 DIAGRAMME DE CLASSES

3.28 Association sur la même classe
@startuml
class Station {

+name: string
}

class StationCrossing {
+cost: TimeInterval

}

<> diamond

StationCrossing . diamond
diamond - "from 0..*" Station
diamond - "to 0..* " Station
@enduml

[Réf. Incubation : Associations]

3.29 Personnalisation
La commande skinparam permet de changer la couleur et les polices de caractères.

Vous pouvez utiliser cette commande :

• Dans le diagramme, comme toutes les autre commandes,

• Dans un fichier inclus,

• Dans un fichier de configuration précisé par la ligne de commande ou la tâche ANT.

@startuml

skinparam class {
BackgroundColor PaleGreen
ArrowColor SeaGreen
BorderColor SpringGreen
}

Guide de référence du langage PlantUML (1.2025.0) 83 / 580

3.30 Stéréotypes Personnalisés 3 DIAGRAMME DE CLASSES

skinparam stereotypeCBackgroundColor YellowGreen

Class01 "1" *-- "many" Class02 : contains

Class03 o-- Class04 : aggregation

@enduml

3.30 Stéréotypes Personnalisés
Vous pouvez définir des couleurs et des fontes de caractères spécifiques pour les classes stéréotypées.

@startuml

skinparam class {
BackgroundColor PaleGreen
ArrowColor SeaGreen
BorderColor SpringGreen
BackgroundColor<<Foo>> Wheat
BorderColor<<Foo>> Tomato
}
skinparam stereotypeCBackgroundColor YellowGreen
skinparam stereotypeCBackgroundColor<< Foo >> DimGray

Class01 <<Foo>>
Class03 <<Foo>>
Class01 "1" *-- "many" Class02 : contains

Class03 o-- Class04 : aggregation

@enduml

Any of the spaces shown as ‘_‘ below will cause all skinparams to be ignored, see [discord discus-
sion](https://discord.com/channels/1083727021328306236/1289954399321329755/1289967399302467614)
and [issue #1932](https://github.com/plantuml/plantuml/issues/1932):

Guide de référence du langage PlantUML (1.2025.0) 84 / 580

3.31 Dégradé de couleurs 3 DIAGRAMME DE CLASSES

• ‘BackgroundColor_«Foo» Wheat‘

• ‘skinparam stereotypeCBackgroundColor_«Foo» DimGray‘

3.31 Dégradé de couleurs
Vous pouvez déclarer des couleurs individuelles pour les classes, les notes, etc. en utilisant la notation #.

Vous pouvez utiliser des noms de couleurs standard ou des codes RVB dans diverses notations, voir
Couleurs.

Vous pouvez également utiliser le dégradé de couleurs pour les couleurs de fond, avec la syntaxe suivante
: deux noms de couleurs séparés soit par :

• | ,

• / ,

• \ , ou

• -

selon la direction du gradient.

Par exemple

@startuml

skinparam backgroundcolor AntiqueWhite/Gold
skinparam classBackgroundColor Wheat|CornflowerBlue

class Foo #red-green
note left of Foo #blue\9932CC

this is my
note on this class

end note

package example #GreenYellow/LightGoldenRodYellow {
class Dummy

}

@enduml

3.32 Aide pour la mise en page
Sometimes, the default layout is not perfect...

You can use together keyword to group some classes together : the layout engine will try to group them
(as if they were in the same package).

You can also use hidden links to force the layout.

@startuml

class Bar1
class Bar2
together {

class Together1
class Together2

Guide de référence du langage PlantUML (1.2025.0) 85 / 580

3.33 Découper les grands diagrammes 3 DIAGRAMME DE CLASSES

class Together3
}
Together1 - Together2
Together2 - Together3
Together2 -[hidden]--> Bar1
Bar1 -[hidden]> Bar2

@enduml

3.33 Découper les grands diagrammes
Parfois, vous obtiendrez des images de taille importante.

Vous pouvez utiliser la commande page (hpages)x(vpages) pour découper l’image en plusieurs fichiers:

hpages est le nombre de pages horizontales et vpages indique le nombre de pages verticales.

Vous pouvez aussi utiliser des paramètres spécifiques pour rajouter des bords sur les pages découpées
(voir l’exemple).

@startuml
' Split into 4 pages
page 2x2
skinparam pageMargin 10
skinparam pageExternalColor gray
skinparam pageBorderColor black

class BaseClass

namespace net.dummy #DDDDDD {
.BaseClass <|-- Person
Meeting o-- Person

.BaseClass <|- Meeting

}

namespace net.foo {
net.dummy.Person <|- Person
.BaseClass <|-- Person

net.dummy.Meeting o-- Person
}

BaseClass <|-- net.unused.Person
@enduml

Guide de référence du langage PlantUML (1.2025.0) 86 / 580

3.34 Extension et implementation [extends, implements] 3 DIAGRAMME DE CLASSES

3.34 Extension et implementation [extends, implements]
Il est aussi possible d’utiliser directement les mots clés extends and implements.

@startuml
class ArrayList implements List
class ArrayList extends AbstractList
@enduml

[Ref. QA-2239]

3.35 Relations entre crochets (liens ou flèches) style
3.35.1 Style de ligne

Il est également possible d’avoir explicitement des relations, des liens ou des flèches bold, dashed, dotted,
hidden ou plain:

• sans étiquette

@startuml
title Bracketed line style without label
class foo
class bar
bar1 : [bold]
bar2 : [dashed]
bar3 : [dotted]
bar4 : [hidden]
bar5 : [plain]

foo --> bar
foo -[bold]-> bar1

Guide de référence du langage PlantUML (1.2025.0) 87 / 580

3.35 Relations entre crochets (liens ou flèches) style 3 DIAGRAMME DE CLASSES

foo -[dashed]-> bar2
foo -[dotted]-> bar3
foo -[hidden]-> bar4
foo -[plain]-> bar5
@enduml

• avec étiquette

@startuml
title Bracketed line style with label
class foo
class bar
bar1 : [bold]
bar2 : [dashed]
bar3 : [dotted]
bar4 : [hidden]
bar5 : [plain]

foo --> bar : �
foo -[bold]-> bar1 : [bold]
foo -[dashed]-> bar2 : [dashed]
foo -[dotted]-> bar3 : [dotted]
foo -[hidden]-> bar4 : [hidden]
foo -[plain]-> bar5 : [plain]

@enduml

[Adapté de QA-4181]

3.35.2 Couleur de ligne

@startuml
title Bracketed line color
class foo
class bar

Guide de référence du langage PlantUML (1.2025.0) 88 / 580

3.35 Relations entre crochets (liens ou flèches) style 3 DIAGRAMME DE CLASSES

bar1 : [#red]
bar2 : [#green]
bar3 : [#blue]

foo --> bar
foo -[#red]-> bar1 : [#red]
foo -[#green]-> bar2 : [#green]
foo -[#blue]-> bar3 : [#blue]
'foo -[#blue;#yellow;#green]-> bar4
@enduml

3.35.3 Épaisseur de ligne

@startuml
title Bracketed line thickness
class foo
class bar
bar1 : [thickness=1]
bar2 : [thickness=2]
bar3 : [thickness=4]
bar4 : [thickness=8]
bar5 : [thickness=16]

foo --> bar : �
foo -[thickness=1]-> bar1 : [1]
foo -[thickness=2]-> bar2 : [2]
foo -[thickness=4]-> bar3 : [4]
foo -[thickness=8]-> bar4 : [8]
foo -[thickness=16]-> bar5 : [16]

@enduml

[Réf. QA-4949]

Guide de référence du langage PlantUML (1.2025.0) 89 / 580

3.36 Modifier la couleur et le style d’une relation (lien ou flèche) (style en ligne)3 DIAGRAMME DE CLASSES

3.35.4 Mélange

@startuml
title Bracketed line style mix
class foo
class bar
bar1 : [#red,thickness=1]
bar2 : [#red,dashed,thickness=2]
bar3 : [#green,dashed,thickness=4]
bar4 : [#blue,dotted,thickness=8]
bar5 : [#blue,plain,thickness=16]

foo --> bar : �
foo -[#red,thickness=1]-> bar1 : [#red,1]
foo -[#red,dashed,thickness=2]-> bar2 : [#red,dashed,2]
foo -[#green,dashed,thickness=4]-> bar3 : [#green,dashed,4]
foo -[#blue,dotted,thickness=8]-> bar4 : [blue,dotted,8]
foo -[#blue,plain,thickness=16]-> bar5 : [blue,plain,16]
@enduml

3.36 Modifier la couleur et le style d’une relation (lien ou flèche) (style en
ligne)

Vous pouvez modifier la couleur ou le style d’une relation ou d’une flèche individuelle en utilisant la
notation suivante en ligne

• #color;line.[bold|dashed|dotted];text:color

@startuml
class foo
foo --> bar : normal
foo --> bar1 #line:red;line.bold;text:red : red bold
foo --> bar2 #green;line.dashed;text:green : green dashed
foo --> bar3 #blue;line.dotted;text:blue : blue dotted
@enduml

[Voir une fonctionnalité similaire sur le déploiement]

Guide de référence du langage PlantUML (1.2025.0) 90 / 580

3.37 Modifier la couleur et le style d’une classe (style en ligne) 3 DIAGRAMME DE CLASSES

3.37 Modifier la couleur et le style d’une classe (style en ligne)
Vous pouvez modifier la couleur ou le style d’une classe individuelle en utilisant les deux notations
suivantes

• #color ##[style]color

Avec la couleur de fond d’abord (#color), puis le style de ligne et la couleur de ligne (##[style]color)

@startuml
abstract abstract
annotation annotation #pink ##[bold]red
class class #palegreen ##[dashed]green
interface interface #aliceblue ##[dotted]blue
@enduml

[Réf. QA-1487]

• #[color|back:color];header:color;line:color;line.[bold|dashed|dotted];text:color

@startuml
abstract abstract
annotation annotation #pink;line:red;line.bold;text:red
class class #palegreen;line:green;line.dashed;text:green
interface interface #aliceblue;line:blue;line.dotted;text:blue
@enduml

Premier exemple original

@startuml
class bar #line:green;back:lightblue
class bar2 #lightblue;line:green

class Foo1 #back:red;line:00FFFF
class FooDashed #line.dashed:blue
class FooDotted #line.dotted:blue
class FooBold #line.bold
class Demo1 #back:lightgreen|yellow;header:blue/red
@enduml

Guide de référence du langage PlantUML (1.2025.0) 91 / 580

3.38 Flèches de/vers les membres de la classe 3 DIAGRAMME DE CLASSES

[Réf. QA-3770]

3.38 Flèches de/vers les membres de la classe
@startuml
class Foo {
+ field1
+ field2
}

class Bar {
+ field3
+ field4
}

Foo::field1 --> Bar::field3 : foo
Foo::field2 --> Bar::field4 : bar
@enduml

Ref. QA-3636]

@startuml
left to right direction

class User {
id : INTEGER
..
other_id : INTEGER

}

class Email {

Guide de référence du langage PlantUML (1.2025.0) 92 / 580

3.39 Regroupement de flèche d’héritage 3 DIAGRAMME DE CLASSES

id : INTEGER
..
user_id : INTEGER
address : INTEGER

}

User::id *-- Email::user_id
@enduml

[Réf. QA-5261]

3.39 Regroupement de flèche d’héritage
Vous pouvez fusionner toutes les têtes de flèche à l’aide de la fonction skinparam groupInheritance,
avec un seuil comme paramètre.

3.39.1 GroupInheritance 1 (pas de regroupement)

@startuml
skinparam groupInheritance 1

A1 <|-- B1

A2 <|-- B2
A2 <|-- C2

A3 <|-- B3
A3 <|-- C3
A3 <|-- D3

A4 <|-- B4
A4 <|-- C4
A4 <|-- D4
A4 <|-- E4
@enduml

3.39.2 GroupInheritance 2 (regroupement à partir de 2)

@startuml
skinparam groupInheritance 2

A1 <|-- B1

Guide de référence du langage PlantUML (1.2025.0) 93 / 580

3.39 Regroupement de flèche d’héritage 3 DIAGRAMME DE CLASSES

A2 <|-- B2
A2 <|-- C2

A3 <|-- B3
A3 <|-- C3
A3 <|-- D3

A4 <|-- B4
A4 <|-- C4
A4 <|-- D4
A4 <|-- E4
@enduml

3.39.3 GroupInheritance 3 (regroupement uniquement à partir de 3)

@startuml
skinparam groupInheritance 3

A1 <|-- B1

A2 <|-- B2
A2 <|-- C2

A3 <|-- B3
A3 <|-- C3
A3 <|-- D3

A4 <|-- B4
A4 <|-- C4
A4 <|-- D4
A4 <|-- E4
@enduml

3.39.4 GroupInheritance 4 (regroupement uniquement à partir de 4)

@startuml
skinparam groupInheritance 4

Guide de référence du langage PlantUML (1.2025.0) 94 / 580

3.40 Display JSON Data on Class or Object diagram 3 DIAGRAMME DE CLASSES

A1 <|-- B1

A2 <|-- B2
A2 <|-- C2

A3 <|-- B3
A3 <|-- C3
A3 <|-- D3

A4 <|-- B4
A4 <|-- C4
A4 <|-- D4
A4 <|-- E4
@enduml

[Réf. QA-3193, et Défaut QA-13532]

3.40 Display JSON Data on Class or Object diagram
3.40.1 Simple example

@startuml
class Class
object Object
json JSON {

"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-15481]

For another example, see on JSON page.

Guide de référence du langage PlantUML (1.2025.0) 95 / 580

3.41 Packages and Namespaces Enhancement 3 DIAGRAMME DE CLASSES

3.41 Packages and Namespaces Enhancement
[From V1.2023.2+, and V1.2023.5]

@startuml
class A.B.C.D.Z {
}
@enduml

@startuml
set separator none
class A.B.C.D.Z {
}
@enduml

@startuml
!pragma useIntermediatePackages false
class A.B.C.D.Z {
}
@enduml

@startuml
set separator none
package A.B.C.D {

class Z {
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 96 / 580

3.42 Qualified associations 3 DIAGRAMME DE CLASSES

[Ref. GH-1352]

3.42 Qualified associations
3.42.1 Minimal example

@startuml
class class1
class class2

class1 [Qualifier] - class2
@enduml

[Ref. QA-16397, GH-1467]

3.42.2 Another example

@startuml
interface Map<K,V>
class HashMap<Long,Customer>

Map <|.. HashMap
Shop [customerId: long] ---> "customer\n1" Customer
HashMap [id: Long] -r-> "value" Customer

@enduml

3.43 Change diagram orientation
You can change (whole) diagram orientation with:

• top to bottom direction (by default)

• left to right direction

3.43.1 Top to bottom (by default)

3.43.2 With Graphviz (layout engine by default)

The main rule is: Nested element first, then simple element.

@startuml
class a
class b

Guide de référence du langage PlantUML (1.2025.0) 97 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

package A {
class a1
class a2
class a3
class a4
class a5
package sub_a {
class sa1
class sa2
class sa3
}

}

package B {
class b1
class b2
class b3
class b4
class b5
package sub_b {
class sb1
class sb2
class sb3
}

}
@enduml

3.43.3 With Smetana (internal layout engine)

The main rule is the opposite: Simple element first, then nested element.

@startuml
!pragma layout smetana
class a
class b
package A {

class a1
class a2
class a3
class a4
class a5
package sub_a {
class sa1
class sa2
class sa3
}

Guide de référence du langage PlantUML (1.2025.0) 98 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

}

package B {
class b1
class b2
class b3
class b4
class b5
package sub_b {
class sb1
class sb2
class sb3
}

}
@enduml

3.43.4 Left to right

3.43.5 With Graphviz (layout engine by default)

@startuml
left to right direction
class a
class b
package A {

class a1
class a2
class a3
class a4
class a5
package sub_a {
class sa1
class sa2
class sa3
}

}

package B {
class b1
class b2
class b3
class b4
class b5
package sub_b {
class sb1
class sb2
class sb3

Guide de référence du langage PlantUML (1.2025.0) 99 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 100 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

Guide de référence du langage PlantUML (1.2025.0) 101 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

3.43.6 With Smetana (internal layout engine)

@startuml
!pragma layout smetana
left to right direction
class a
class b
package A {

class a1
class a2
class a3
class a4
class a5
package sub_a {
class sa1
class sa2
class sa3
}

}

package B {
class b1
class b2
class b3
class b4
class b5
package sub_b {
class sb1
class sb2
class sb3
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 102 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

Guide de référence du langage PlantUML (1.2025.0) 103 / 580

4 DIAGRAMME D’OBJETS

4 Diagramme d’objets
Un diagramme d’objets est une représentation graphique qui met en évidence les objets et leurs
relations à un moment précis. Il fournit un instantané de la structure du système, capturant la vue
statique des instances présentes et de leurs associations.

PlantUML offre un moyen simple et intuitif de créer des diagrammes d’objets en utilisant du texte sim-
ple. Sa syntaxe conviviale permet de créer rapidement des diagrammes sans avoir recours à des outils GUI
complexes. En outre, le forum PlantUML offre aux utilisateurs une plateforme pour discuter, partager
et demander de l’aide, favorisant ainsi une communauté de collaboration. En choisissant PlantUML, les
utilisateurs bénéficient à la fois de l’efficacité des diagrammes basés sur le markdown et du soutien d’une
communauté active.

4.1 Définition des objets
Les instances d’objets sont défnies avec le mot clé object.

@startuml
object firstObject
object "My Second Object" as o2
@enduml

4.2 Relations entre les objets
Les relations entre objets sont définies à l’aide des symboles suivants :

Type Symbole Objectif
Extension <|-- Spécialisation d’une classe dans une hiérarchie
Implémentation <|.. Réalisation d’une interface par une classe
Composition *-- La partie ne peut exister sans le tout
Agrégation o-- La partie peut exister indépendamment du tout
Dépendance --> L’objet utilise un autre objet
Dépendance ..> Une forme plus faible de dépendance

Il est possible de remplacer -- par .. pour avoir des pointillés.

Grâce à ces règles, on peut avoir les dessins suivants:

Il est possible d’ajouter une étiquette sur la relation, en utilisant : suivi par le texte de l’étiquette.

Pour les cardinalités, vous pouvez utiliser les doubles quotes "" sur chaque côté de la relation.

@startuml
object Object01
object Object02
object Object03
object Object04
object Object05
object Object06
object Object07
object Object08

Object01 <|-- Object02
Object03 *-- Object04
Object05 o-- "4" Object06
Object07 .. Object08 : some labels
@enduml

Guide de référence du langage PlantUML (1.2025.0) 104 / 580

4.3 Association d’objects 4 DIAGRAMME D’OBJETS

4.3 Association d’objects
@startuml
object o1
object o2
diamond dia
object o3

o1 --> dia
o2 --> dia
dia --> o3
@enduml

4.4 Ajout de champs
Pour déclarer un champ, vous pouvez utiliser le symbole : suivi par le nom du champs.

@startuml

object user

user : name = "Dummy"
user : id = 123

@enduml

It is also possible to ground between brackets {} all fields.

@startuml

object user {
name = "Dummy"
id = 123

}

Guide de référence du langage PlantUML (1.2025.0) 105 / 580

4.5 Caractéristiques communes avec les diagrammes de classes 4 DIAGRAMME D’OBJETS

@enduml

4.5 Caractéristiques communes avec les diagrammes de classes
• Visibilité

• Ajout de notes

• Utilisation de packages

• Personnalisation de l’affichage

4.6 Table de correspondance ou tableau associatif
Vous pouvez définir une table de correspondance ou un tableau associatif, avec le mot clé map et le
séparateur =>

@startuml
map CapitalCity {
UK => London
USA => Washington
Germany => Berlin

}
@enduml

@startuml
map "Map **Contry => CapitalCity**" as CC {
UK => London
USA => Washington
Germany => Berlin

}
@enduml

@startuml
map "map: Map<Integer, String>" as users {
1 => Alice
2 => Bob
3 => Charlie

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 106 / 580

4.6 Table de correspondance ou tableau associatif 4 DIAGRAMME D’OBJETS

Et ajouter un lien avec un objet

@startuml
object London

map CapitalCity {
UK *-> London
USA => Washington
Germany => Berlin

}
@enduml

@startuml
object London
object Washington
object Berlin
object NewYork

map CapitalCity {
UK *-> London
USA *--> Washington
Germany *---> Berlin

}

NewYork --> CapitalCity::USA
@enduml

[Réf. n° 307]

Guide de référence du langage PlantUML (1.2025.0) 107 / 580

4.7 Program (or project) evaluation and review technique (PERT) with map4 DIAGRAMME D’OBJETS

4.7 Program (or project) evaluation and review technique (PERT) with map
You can use map table in order to make Program (or project) evaluation and review technique (PERT)
diagram.

@startuml PERT
left to right direction
' Horizontal lines: -->, <--, <-->
' Vertical lines: ->, <-, <->
title PERT: Project Name

map Kick.Off {
}
map task.1 {

Start => End
}
map task.2 {

Start => End
}
map task.3 {

Start => End
}
map task.4 {

Start => End
}
map task.5 {

Start => End
}
Kick.Off --> task.1 : Label 1
Kick.Off --> task.2 : Label 2
Kick.Off --> task.3 : Label 3
task.1 --> task.4
task.2 --> task.4
task.3 --> task.4
task.4 --> task.5 : Label 4
@enduml

[Ref. QA-12337]

Guide de référence du langage PlantUML (1.2025.0) 108 / 580

4.8 Display JSON Data on Class or Object diagram 4 DIAGRAMME D’OBJETS

4.8 Display JSON Data on Class or Object diagram
4.8.1 Simple example

@startuml
class Class
object Object
json JSON {

"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-15481]

For another example, see on JSON page.

Guide de référence du langage PlantUML (1.2025.0) 109 / 580

5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

5 Diagrammes d’activité (ancienne syntaxe)
Il s’agit de l’ancienne syntaxe du diagramme d’activités, pour voir la nouvelle version actuelle, voir:
Diagrammes d’activité (nouvelle syntaxe).

5.1 Action simple
Vous pouvez utiliser (*) pour le point de départ et le point d’arrivée de le diagramme d’activité.

Dans certaines occasions, vous pouvez utiliser (*top) pour forcer le point de départ à être en haut du
diagramme.

Utilisez --> pour les flèches

@startuml

(*) --> "First Action"
"First Action" --> (*)

@enduml

5.2 Texte sur les flèches
Par défaut, une flèche commence à partir de la dernière activité définie.

Vous pouvez rajouter un libellé sur une flèche en mettant des crochets [et] juste après la définition de
la flèche.

@startuml

(*) --> "First Action"
-->[You can put also labels] "Second Action"
--> (*)

@enduml

Guide de référence du langage PlantUML (1.2025.0) 110 / 580

5.3 Changer la direction des flèches 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

5.3 Changer la direction des flèches
Vous pouvez utiliser -> pour les flèches horizontales. Il est aussi possible de forcer la direction d’une
flèche en utilisant la syntaxe suivante :

• -down-> (default arrow)

• -right-> or ->

• -left->

• -up->

@startuml

(*) -up-> "First Action"
-right-> "Second Action"
--> "Third Action"
-left-> (*)

@enduml

5.4 Branches
Vous pouvez utiliser le mot clé if/then/else pour définir une branche.

@startuml
(*) --> "Initialization"

if "Some Test" then
-->[true] "Some Action"
--> "Another Action"
-right-> (*)

else
->[false] "Something else"
-->[Ending process] (*)

endif

@enduml

Guide de référence du langage PlantUML (1.2025.0) 111 / 580

5.5 Encore des branches 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

Malheureusement, vous devez parfois avoir à répéter la même activité dans le diagramme de texte.

@startuml
(*) --> "check input"
If "input is verbose" then
--> [Yes] "turn on verbosity"
--> "run command"
else
--> "run command"
Endif
-->(*)
@enduml

5.5 Encore des branches
Par défaut, une branche commence à la dernière activité définie, mais il est possible de passer outre et
de définir un lien avec le mot clé if.

Il est aussi possible d’imbriquer les branches.

@startuml

Guide de référence du langage PlantUML (1.2025.0) 112 / 580

5.6 Synchronisation 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

(*) --> if "Some Test" then

-->[true] "activity 1"

if "" then
-> "activity 3" as a3

else
if "Other test" then
-left-> "activity 5"

else
--> "activity 6"

endif
endif

else

->[false] "activity 2"

endif

a3 --> if "last test" then
--> "activity 7"

else
-> "activity 8"

endif

@enduml

5.6 Synchronisation
Vous pouvez utiliser la syntaxe === code === pour afficher des barres de synchronisation.

@startuml

(*) --> ===B1===
--> "Parallel Activity 1"

Guide de référence du langage PlantUML (1.2025.0) 113 / 580

5.7 Description détaillée 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

--> ===B2===

===B1=== --> "Parallel Activity 2"
--> ===B2===

--> (*)

@enduml

5.7 Description détaillée
Lorsque vous déclarez des activités, vous pouvez positionner sur plusieurs lignes le texte de description
Vous pouvez également ajouter \n dans la description. Il est également possible d’utiliser quelques tags
HTML tels que :

Vous pouvez aussi donner un court code à l’activité avec le mot clé as. Ce code peut être utilisé plus
tard dans le diagramme de description.

@startuml
(*) -left-> "this <size:20>activity</size>
is very <color:red>long2</color>
and defined on several lines
that contains many <i>text</i>" as A1

-up-> "Another activity\n on several lines"

A1 --> "Short activity <img:sourceforge.jpg>"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 114 / 580

5.8 Notes 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

5.8 Notes
Vous pouvez rajouter des notes sur une activités en utilisant les commandes: note left, note right,
note top ou note bottom, juste après la définition de l’activité concernée.

Si vous voulez mettre une note sur le démarrage du diagramme, définissez la note au tout début du
diagramme.

Vous pouvez aussi avoir une note sur plusieurs lignes, en utilisant les mots clés endnote.

@startuml

(*) --> "Some Activity"
note right: This activity has to be defined
"Some Activity" --> (*)
note left
This note is on
several lines

end note

@enduml

5.9 Partition
Vous pouvez définir une partition en utilisant le mot clé partition, et optionnellement déclarer un fond
de couleur pour votre partition (En utilisant un code couleur html ou un nom)

Quand vous déclarez les activités, ils sont automatiquement mis dans la dernière partition utilisée.

Vous pouvez fermer la partition de définition en utilisant les crochets fermants }.

@startuml

partition Conductor {
(*) --> "Climbs on Platform"
--> === S1 ===
--> Bows

}

partition Audience #LightSkyBlue {
=== S1 === --> Applauds

}

partition Conductor {
Bows --> === S2 ===
--> WavesArmes
Applauds --> === S2 ===

}

partition Orchestra #CCCCEE {
WavesArmes --> Introduction
--> "Play music"

Guide de référence du langage PlantUML (1.2025.0) 115 / 580

5.10 Paramètre de thème 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

}

@enduml

5.10 Paramètre de thème
Vous pouvez utiliser la commande skinparam pour changer la couleur et la police d’écriture pour dessiner.

Vous pouvez utiliser cette commande :

• Dans le diagramme de définition, comme n’importe quelle autre commande,

• Dans un fichier inclus,

• Dans un fichier de configuration, à l’aide de la la ligne de commande ou la tâche ANT.

Vous pouvez spécifier une couleur et une police d’écriture dans les stéréotypes d’activités.

@startuml

skinparam backgroundColor #AAFFFF
skinparam activity {

StartColor red
BarColor SaddleBrown
EndColor Silver
BackgroundColor Peru
BackgroundColor<< Begin >> Olive
BorderColor Peru
FontName Impact

}

Guide de référence du langage PlantUML (1.2025.0) 116 / 580

5.11 Octogone 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

(*) --> "Climbs on Platform" << Begin >>
--> === S1 ===
--> Bows
--> === S2 ===
--> WavesArmes
--> (*)

@enduml

5.11 Octogone
Vous pouvez changer la forme des activités en octogone en utilisant la commande skinparam activityShape
octagon.

@startuml
'Default is skinparam activityShape roundBox
skinparam activityShape octagon

(*) --> "First Activity"
"First Activity" --> (*)

@enduml

5.12 Exemple complet
@startuml
title Servlet Container

(*) --> "ClickServlet.handleRequest()"

Guide de référence du langage PlantUML (1.2025.0) 117 / 580

5.12 Exemple complet 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

--> "new Page"

if "Page.onSecurityCheck" then
->[true] "Page.onInit()"

if "isForward?" then
->[no] "Process controls"

if "continue processing?" then
-->[yes] ===RENDERING===

else
-->[no] ===REDIRECT_CHECK===

endif

else
-->[yes] ===RENDERING===
endif

if "is Post?" then
-->[yes] "Page.onPost()"
--> "Page.onRender()" as render
--> ===REDIRECT_CHECK===

else
-->[no] "Page.onGet()"
--> render

endif

else
-->[false] ===REDIRECT_CHECK===

endif

if "Do redirect?" then
->[yes] "redirect request"
--> ==BEFORE_DESTROY===

else
if "Do Forward?" then
-left->[yes] "Forward request"
--> ==BEFORE_DESTROY===
else
-right->[no] "Render page template"
--> ==BEFORE_DESTROY===
endif

endif

--> "Page.onDestroy()"
-->(*)

@enduml

Guide de référence du langage PlantUML (1.2025.0) 118 / 580

5.12 Exemple complet 5 DIAGRAMMES D’ACTIVITÉ (ANCIENNE SYNTAXE)

Guide de référence du langage PlantUML (1.2025.0) 119 / 580

6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6 Diagramme d’activité (nouvelle syntaxe)
La syntaxe précédente utilisée pour les diagrammes d’activité présentait plusieurs limitations et prob-
lèmes de maintenabilité. Conscients de ces inconvénients, nous avons introduit une syntaxe et une
implémentation entièrement remaniées qui sont non seulement conviviales mais aussi plus stables.

6.0.1 Avantages de la nouvelle syntaxe

• Aucune dépendance à l’égard de Graphviz : Tout comme pour les diagrammes de séquence, la nou-
velle syntaxe élimine la nécessité d’installer Graphviz, ce qui simplifie le processus de configuration.

• Facilité de maintenance : La nature intuitive de la nouvelle syntaxe signifie qu’il est plus facile de
gérer et de maintenir vos diagrammes.

6.0.2 Transition vers la nouvelle syntaxe

Bien que nous continuions à prendre en charge l’ancienne syntaxe pour maintenir la compatibilité, nous
encourageons vivement les utilisateurs à migrer vers la nouvelle syntaxe pour tirer parti des fonctionnalités
améliorées et des avantages qu’elle offre.

Faites le changement dès aujourd’hui et découvrez un processus de création de diagrammes plus rationalisé
et plus efficace avec la nouvelle syntaxe de diagramme d’activité.

6.1 Action simple
L’étiquette des activités commence par : et se termine par ;.

Le formatage du texte peut se faire en utilisant la syntaxe wiki créole.

Ils sont implicitement liés dans l’ordre de leur définition.

@startuml
:Hello world;
:This is defined on
several **lines**;
@enduml

6.2 Départ/Arrêt [start, stop, end]
Vous pouvez utiliser les mots clés start et stop pour indiquer le début et la fin du diagramme.

@startuml
start
:Hello world;
:This is on defined on
several **lines**;
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 120 / 580

6.3 Conditionnel [if, then, else] 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

Vous pouvez aussi utiliser le mot clé end.

@startuml
start
:Hello world;
:This is on defined on
several **lines**;
end
@enduml

6.3 Conditionnel [if, then, else]
Vous pouvez utiliser les mots clés if, then et else pour mettre des tests dans votre diagramme. Les
étiquettes peuvent être fournies entre parenthèses.

Les trois syntaxes possibles sont:

• if (...) then (...)

@startuml

start

if (Graphviz installed?) then (yes)
:process all\ndiagrams;

else (no)
:process only
__sequence__ and __activity__ diagrams;

endif

stop

@enduml

Guide de référence du langage PlantUML (1.2025.0) 121 / 580

6.3 Conditionnel [if, then, else] 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

• if (...) is (...) then

@startuml
if (color?) is (<color:red>red) then
:print red;
else
:print not red;
@enduml

• if (...) equals (...) then

@startuml
if (counter?) equals (5) then
:print 5;
else
:print not 5;
@enduml

[Ref. QA-301]

6.3.1 Plusieurs conditions (en mode horizontal)

Vous pouvez utiliser le mot clé elseif pour avoir plusieurs tests, par défaut le mode est horizontal :

@startuml
start
if (condition A) then (yes)

:Text 1;
elseif (condition B) then (yes)

:Text 2;
stop

elseif (condition C) then (yes)
:Text 3;

elseif (condition D) then (yes)
:Text 4;

else (nothing)

Guide de référence du langage PlantUML (1.2025.0) 122 / 580

6.3 Conditionnel [if, then, else] 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

:Text else;
endif
stop
@enduml

6.3.2 Plusieurs conditions (en mode vertical)

Vous pouvez utiliser la commande !pragma useVerticalIf on pour avoir les conditions en mode vertical
:

@startuml
!pragma useVerticalIf on
start
if (condition A) then (yes)

:Text 1;
elseif (condition B) then (yes)

:Text 2;
stop

elseif (condition C) then (yes)
:Text 3;

elseif (condition D) then (yes)
:Text 4;

else (nothing)
:Text else;

endif
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 123 / 580

6.4 Switch and case [switch, case, endswitch]6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

[Réf. QA-3931]

*[Refs. [QA-3931](https:forum.plantuml.net/3931/please-provide-elseif-structure-vertically-activity-diagrams),
[issue-582](https:github.com/plantuml/plantuml/issues/582)]*

*[Refs. [QA-3931](https:forum.plantuml.net/3931/please-provide-elseif-structure-vertically-activity-diagrams),
[GH-582](https:github.com/plantuml/plantuml/issues/582)]*

6.4 Switch and case [switch, case, endswitch]
Vous pouvez utiliser les mots clés switch, case et endswitch pour mettre des tests dans votre diagramme.

Les étiquettes peuvent être fournies entre parenthèses.

@startuml
start
switch (test?)
case (condition A)

:Text 1;
case (condition B)

:Text 2;
case (condition C)

:Text 3;
case (condition D)

:Text 4;
case (condition E)

:Text 5;
endswitch
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 124 / 580

6.5 Arrêt après une action au sein d’une condition [kill, detach]6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.5 Arrêt après une action au sein d’une condition [kill, detach]
Vous pouvez arrêter le processus après une action.

@startuml
if (condition?) then

:error;
stop

endif
#palegreen:action;
@enduml

Vous pouvez également utiliser les mots clé kill ou detach pour mettre fin au processus directement
dans une action.

• kill

@startuml
if (condition?) then

#pink:error;
kill

endif
#palegreen:action;
@enduml

[Ref. QA-265]

Guide de référence du langage PlantUML (1.2025.0) 125 / 580

6.6 Boucle de répétition [repeat, repeatwhile, backward]6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

• detach

@startuml
if (condition?) then

#pink:error;
detach

endif
#palegreen:action;
@enduml

6.6 Boucle de répétition [repeat, repeatwhile, backward]
Vous pouvez utiliser les mots clés repeat et repeatwhile pour créer une boucle.

@startuml

start

repeat
:read data;
:generate diagrams;

repeat while (more data?)

stop

@enduml

Il est également possible :

• d’utiliser une vrai action comme cible de répétition, après le premier mot clé repeat,

• d’insérer une action dans le chemin de retour à l’aide du mot clé backward.

@startuml

start

Guide de référence du langage PlantUML (1.2025.0) 126 / 580

6.7 Interruption d’une boucle [break] 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

repeat :foo as starting label;
:read data;
:generate diagrams;

backward:This is backward;
repeat while (more data?)

stop

@enduml

[Ref. QA-5826]

6.7 Interruption d’une boucle [break]
Vous pouvez utiliser le mot clé break après une action sur une boucle:

@startuml
start
repeat

:Test something;
if (Something went wrong?) then (no)
#palegreen:OK;
break

endif
->NOK;
:Alert "Error with long text";

repeat while (Something went wrong with long text?) is (yes) not (no)
->//merged step//;
:Alert "Success";
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 127 / 580

6.8 Goto and Label Processing [label, goto]6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

[Ref. QA-6105]

6.8 Goto and Label Processing [label, goto]
� It is currently only experimental �

You can use label and goto keywords to denote goto processing, with:

• label <label_name>

• goto <label_name>

@startuml
title Point two queries to same activity\nwith `goto`
start
if (Test Question?) then (yes)
'space label only for alignment
label sp_lab0
label sp_lab1
'real label
label lab
:shared;
else (no)
if (Second Test Question?) then (yes)
label sp_lab2
goto sp_lab1
else
:nonShared;
endif
endif
:merge;

Guide de référence du langage PlantUML (1.2025.0) 128 / 580

6.9 Boucle « tant que » [while] 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

@enduml

[Ref. QA-15026, QA-12526 and initially QA-1626]

6.9 Boucle « tant que » [while]
Vous pouvez utiliser les mots clés while et end while pour définir une boucle.

@startuml

start

while (data available?)
:read data;
:generate diagrams;

endwhile

stop

@enduml

Il est possible de mettre un libellé après le mot clé endwhile ou bien avec le mot clé is.

@startuml
while (check filesize ?) is (not empty)

:read file;
endwhile (empty)
:close file;
@enduml

Guide de référence du langage PlantUML (1.2025.0) 129 / 580

6.10 Traitement parallèle [fork, fork again, end fork, end merge]6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.10 Traitement parallèle [fork, fork again, end fork, end merge]
Vous pouvez utiliser les mots clés fork, fork again et end fork ou end merge pour indiquer un traite-
ment parallèle.

6.10.1 Simple fork

@startuml
start
fork

:action 1;
fork again

:action 2;
end fork
stop
@enduml

6.10.2 fork avec fusion finale

@startuml
start
fork

:action 1;
fork again

:action 2;
end merge
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 130 / 580

6.10 Traitement parallèle [fork, fork again, end fork, end merge]6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

[Réf. QA-5320]

@startuml
start
fork

:action 1;
fork again

:action 2;
fork again

:action 3;
fork again

:action 4;
end merge
stop
@enduml

@startuml
start
fork

:action 1;
fork again

:action 2;
end

end merge
stop
@enduml

[Réf. QA-13731]

6.10.3 Label sur end fork (ou UML joinspec)

@startuml
start
fork

:action A;
fork again

Guide de référence du langage PlantUML (1.2025.0) 131 / 580

6.10 Traitement parallèle [fork, fork again, end fork, end merge]6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

:action B;
end fork {or}
stop
@enduml

@startuml
start
fork

:action A;
fork again

:action B;
end fork {and}
stop
@enduml

[Réf. QA-5346]

6.10.4 Autre exemple

@startuml

start

if (multiprocessor?) then (yes)
fork
:Treatment 1;

fork again
:Treatment 2;

end fork
else (monoproc)

:Treatment 1;
:Treatment 2;

endif

@enduml

Guide de référence du langage PlantUML (1.2025.0) 132 / 580

6.11 Traitement fractionné 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.11 Traitement fractionné
6.11.1 Split

Vous pouvez utiliser les mots-clés split, split again et end split pour indiquer un traitement frac-
tionné

@startuml
start
split

:A;
split again

:B;
split again

:C;
split again

:a;
:b;

end split
:D;
end
@enduml

6.11.2 Fractionnement de l’entrée (multidébut)

Vous pouvez utiliser les flèches hidden pour effectuer un fractionnement de l’entrée (multidébut)

@startuml
split

-[hidden]->
:A;

split again

Guide de référence du langage PlantUML (1.2025.0) 133 / 580

6.11 Traitement fractionné 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

-[hidden]->
:B;

split again
-[hidden]->
:C;

end split
:D;
@enduml

@startuml
split

-[hidden]->
:A;

split again
-[hidden]->
:a;
:b;

split again
-[hidden]->
(Z)

end split
:D;
@enduml

[Ref. QA-8662]

6.11.3 Fractionnement de la sortie (plusieurs extrémités)

Vous pouvez utiliser kill ou detach pour effectuer un fractionnement de la sortie (plusieurs extrémités)

@startuml
start
split

:A;
kill

split again
:B;
detach

split again
:C;

Guide de référence du langage PlantUML (1.2025.0) 134 / 580

6.12 Notes 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

kill
end split
@enduml

@startuml
start
split

:A;
kill

split again
:b;
:c;
detach

split again
(Z)
detach

split again
end

split again
stop

end split
@enduml

6.12 Notes
Le formatage du texte peut être fait en utilisant la syntaxe wiki créole.

Une note peut être flottante, en utilisant le mot clé floating

@startuml

start
:foo1;
floating note left: This is a note
:foo2;
note right

This note is on several
//lines// and can
contain HTML
====
* Calling the method ""foo()"" is prohibited

end note
stop

Guide de référence du langage PlantUML (1.2025.0) 135 / 580

6.12 Notes 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

@enduml

Vous pouvez ajouter une note sur l’activité de retour en arrière

@startuml
start
repeat :Enter data;
:Submit;
backward :Warning;
note right: Note
repeat while (Valid?) is (No) not (Yes)
stop
@enduml

[Ref. QA-11788]

Vous pouvez ajouter une note sur l’activité de partition

@startuml
start
partition "**process** HelloWorld" {

note
This is my note

//Creole test//

end note
:Ready;
:HelloWorld(i)>
:Hello-Sent;

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 136 / 580

6.13 Couleurs 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

[Réf. QA-2398]

6.13 Couleurs
Vous pouvez spécifier une couleur pour certaines activités

@startuml

start
:starting progress;
#HotPink:reading configuration files
These files should be edited at this point!;
#AAAAAA:ending of the process;

@enduml

Vous pouvez également utiliser une couleur dégradée

@startuml
start
partition #red/white testPartition {

#blue\green:testActivity;
}
@enduml

[Réf. QA-4906]

Guide de référence du langage PlantUML (1.2025.0) 137 / 580

6.14 Lignes sans pointe de flèches 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.14 Lignes sans pointe de flèches
Vous pouvez utiliser skinparam ArrowHeadColor none pour connecter des activités en utilisant unique-
ment des lignes, sans flèches (sans pointe sur les flèches).

@startuml
skinparam ArrowHeadColor none
start
:Hello world;
:This is on defined on
several **lines**;
stop
@enduml

@startuml
skinparam ArrowHeadColor none
start
repeat :Enter data;
:Submit;
backward :Warning;
repeat while (Valid?) is (No) not (Yes)
stop
@enduml

6.15 Flèches
En utilisant la notation ->, vous pouvez ajouter du texte à une flèche, et changer sa couleur.

Il est aussi possible d’avoir des flèches en pointillé, en gras, avec des tirets ou bien complètement cachées.

@startuml
:foo1;
-> You can put text on arrows;
if (test) then

-[#blue]->
:foo2;
-[#green,dashed]-> The text can

Guide de référence du langage PlantUML (1.2025.0) 138 / 580

6.16 Connecteurs 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

also be on several lines
and **very** long...;
:foo3;

else
-[#black,dotted]->
:foo4;

endif
-[#gray,bold]->
:foo5;
@enduml

6.16 Connecteurs
Il est possible d’utiliser des parenthèses pour dessiner des connecteurs.

@startuml
start
:Some activity;
(A)
detach
(A)
:Other activity;
@enduml

6.17 Connecteurs en couleur
Vous pouvez ajouter des couleurs aux connecteurs.

@startuml

Guide de référence du langage PlantUML (1.2025.0) 139 / 580

6.18 Regroupement ou partition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

start
:The connector below
wishes he was blue;
#blue:(B)
:This next connector
feels that she would
be better off green;
#green:(G)
stop
@enduml

[Ref. QA-10077]

6.18 Regroupement ou partition
6.18.1 Groupe

Vous pouvez regrouper des activités en définissant un groupe

@startuml
start
group Initialization

:read config file;
:init internal variable;

end group
group Running group

:wait for user interaction;
:print information;

end group

stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 140 / 580

6.18 Regroupement ou partition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.18.2 Partition

Vous pouvez regrouper des activités en définissant une partition

@startuml
start
partition Initialization {

:read config file;
:init internal variable;

}
partition Running {

:wait for user interaction;
:print information;

}

stop
@enduml

Il est également possible de changer la couleur de la partition

Guide de référence du langage PlantUML (1.2025.0) 141 / 580

6.18 Regroupement ou partition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

@startuml
start
partition #lightGreen "Input Interface" {

:read config file;
:init internal variable;

}
partition Running {

:wait for user interaction;
:print information;

}
stop
@enduml

[Réf. QA-2793]

Il est également possible d’ajouter un lien à la partition

@startuml
start
partition "[[http://plantuml.com partition_name]]" {

:read doc. on [[http://plantuml.com plantuml_website]];
:test diagram;

}
end
@enduml

[Réf. QA-542]

Guide de référence du langage PlantUML (1.2025.0) 142 / 580

6.18 Regroupement ou partition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.18.3 Groupe, partition, paquet, rectangle ou carte

Vous pouvez regrouper des activités en définissant :

• groupe ;

• partition ;

• paquet ;

• rectangle ;

• carte

@startuml
start
group Group

:Activity;
end group
floating note: Note on Group

partition Partition {
:Activity;

}
floating note: Note on Partition

package Package {
:Activity;

}
floating note: Note on Package

rectangle Rectangle {
:Activity;

}
floating note: Note on Rectangle

card Card {
:Activity;

}
floating note: Note on Card
end
@enduml

Guide de référence du langage PlantUML (1.2025.0) 143 / 580

6.19 Swimlanes 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.19 Swimlanes
En utilisant le tube |, vous pouvez définir des swimlanes.

Il est également possible de changer la couleur des swimlanes

@startuml
|Swimlane1|
start
:foo1;
|#AntiqueWhite|Swimlane2|
:foo2;
:foo3;
|Swimlane1|
:foo4;
|Swimlane2|
:foo5;
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 144 / 580

6.19 Swimlanes 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

Vous pouvez ajouter une boucle conditionnelle if ou repeat ou while à l’intérieur des swimlanes

@startuml
|#pink|Actor_For_red|
start
if (color?) is (red) then
#pink:**action red**;
:foo1;
else (not red)
|#lightgray|Actor_For_no_red|
#lightgray:**action not red**;
:foo2;
endif
|Next_Actor|
#lightblue:foo3;
:foo4;
|Final_Actor|
#palegreen:foo5;
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 145 / 580

6.19 Swimlanes 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

Vous pouvez également utiliser alias avec les swimlanes, avec cette syntaxe :

• |[#<color>|]<swimlane_alias>| <swimlane_title>

@startuml
|#palegreen|f| fisherman
|c| cook
|#gold|e| eater
|f|
start
:go fish;
|c|
:fry fish;
|e|
:eat fish;
stop
@enduml

[Réf. QA-2681]

Guide de référence du langage PlantUML (1.2025.0) 146 / 580

6.20 Détacher ou arrêter [detach, kill] 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.20 Détacher ou arrêter [detach, kill]
Il est possible de supprimer une flèche en utilisant le mot clé detach ou kill :

• detach

@startuml
:start;
fork
:foo1;
:foo2;

fork again
:foo3;
detach

endfork
if (foo4) then
:foo5;
detach

endif
:foo6;
detach
:foo7;
stop

@enduml

• kill

@startuml
:start;
fork
:foo1;
:foo2;

fork again
:foo3;
kill

Guide de référence du langage PlantUML (1.2025.0) 147 / 580

6.21 SDL (Specification and Description Language)6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

endfork
if (foo4) then
:foo5;
kill

endif
:foo6;
kill
:foo7;
stop

@enduml

6.21 SDL (Specification and Description Language)
En changeant le séparateur final ;, vous pouvez déterminer différents rendus pour l’activité, confor-
mément au langage de description et de spécification (LDS) ou Specification and Description Language
(SDL) (en anglais) :

• |

• <

• >

• /

• \\

•]

• }

@startuml
:Ready;
:next(o)|
:Receiving;
split
:nak(i)<

Guide de référence du langage PlantUML (1.2025.0) 148 / 580

6.22 Exemple complet 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

:ack(o)>
split again
:ack(i)<
:next(o)
on several line|
:i := i + 1]
:ack(o)>

split again
:err(i)<
:nak(o)>

split again
:foo/

split again
:bar\\

split again
:i > 5}

stop
end split
:finish;
@enduml

6.22 Exemple complet
@startuml

start
:ClickServlet.handleRequest();
:new page;
if (Page.onSecurityCheck) then (true)

:Page.onInit();
if (isForward?) then (no)
:Process controls;

Guide de référence du langage PlantUML (1.2025.0) 149 / 580

6.22 Exemple complet 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

if (continue processing?) then (no)
stop

endif

if (isPost?) then (yes)
:Page.onPost();

else (no)
:Page.onGet();

endif
:Page.onRender();

endif
else (false)
endif

if (do redirect?) then (yes)
:redirect process;

else
if (do forward?) then (yes)
:Forward request;

else (no)
:Render page template;

endif
endif

stop

@enduml

Guide de référence du langage PlantUML (1.2025.0) 150 / 580

6.23 Style de condition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.23 Style de condition
6.23.1 Style intérieur (par défaut)

@startuml
skinparam conditionStyle inside
start
repeat

:act1;
:act2;

repeatwhile (end)
:act3;

Guide de référence du langage PlantUML (1.2025.0) 151 / 580

6.23 Style de condition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

@enduml

@startuml
start
repeat

:act1;
:act2;

repeatwhile (end)
:act3;
@enduml

6.23.2 Style diamant

@startuml
skinparam conditionStyle diamond
start
repeat

:act1;
:act2;

repeatwhile (end)
:act3;
@enduml

Guide de référence du langage PlantUML (1.2025.0) 152 / 580

6.23 Style de condition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.23.3 Style InsideDiamond (ou Foo1)

@startuml
skinparam conditionStyle InsideDiamond
start
repeat

:act1;
:act2;

repeatwhile (end)
:act3;
@enduml

@startuml
skinparam conditionStyle foo1
start
repeat

:act1;
:act2;

repeatwhile (end)
:act3;
@enduml

Guide de référence du langage PlantUML (1.2025.0) 153 / 580

6.24 Style de fin de condition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

Ref. QA-1290 et #400]

6.24 Style de fin de condition
6.24.1 Style diamant (par défaut)

• Avec une branche

@startuml
skinparam ConditionEndStyle diamond
:A;
if (decision) then (yes)

:B1;
else (no)
endif
:C;
@enduml

• Avec deux branches (B1, B2)

@startuml
skinparam ConditionEndStyle diamond
:A;
if (decision) then (yes)

:B1;
else (no)

:B2;
endif
:C;
@enduml
@enduml

Guide de référence du langage PlantUML (1.2025.0) 154 / 580

6.24 Style de fin de condition 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

6.24.2 Style ligne horizontale (hline)

• Avec une branche

@startuml
skinparam ConditionEndStyle hline
:A;
if (decision) then (yes)

:B1;
else (no)
endif
:C;
@enduml

• Avec deux branches (B1, B2)

@startuml
skinparam ConditionEndStyle hline
:A;
if (decision) then (yes)

:B1;
else (no)

:B2;
endif
:C;
@enduml
@enduml

Guide de référence du langage PlantUML (1.2025.0) 155 / 580

6.25 Avec le style (global) 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

[Réf. QA-4015]

6.25 Avec le style (global)
6.25.1 Sans style (par défaut)

@startuml
start
:init;
-> test of color;
if (color?) is (<color:red>red) then
:print red;
else
:print not red;
note right: no color
endif
partition End {
:end;
}
-> this is the end;
end
@enduml

6.25.2 Avec style

Vous pouvez utiliser le style pour modifier le rendu des éléments.

@startuml

Guide de référence du langage PlantUML (1.2025.0) 156 / 580

6.25 Avec le style (global) 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

<style>
activityDiagram {

BackgroundColor #33668E
BorderColor #33668E
FontColor #888
FontName arial

diamond {
BackgroundColor #ccf
LineColor #00FF00
FontColor green
FontName arial
FontSize 15

}
arrow {
FontColor gold
FontName arial
FontSize 15

}
partition {
LineColor red
FontColor green
RoundCorner 10
BackgroundColor PeachPuff

}
note {
FontColor Blue
LineColor Navy
BackgroundColor #ccf

}
}
document {

BackgroundColor transparent
}
</style>
start
:init;
-> test of color;
if (color?) is (<color:red>red) then
:print red;
else
:print not red;
note right: no color
endif
partition End {
:end;
}
-> this is the end;
end
@enduml

Guide de référence du langage PlantUML (1.2025.0) 157 / 580

6.25 Avec le style (global) 6 DIAGRAMME D’ACTIVITÉ (NOUVELLE SYNTAXE)

Guide de référence du langage PlantUML (1.2025.0) 158 / 580

7 DIAGRAMME DE COMPOSANTS

7 Diagramme de composants
Diagramme de composants: Un diagramme de composants est un type de diagramme structurel utilisé
dans UML (Unified Modeling Language) pour visualiser l’organisation et les relations des composants
d’un système. Ces diagrammes aident à décomposer des systèmes complexes en composants gérables, en
montrant leurs interdépendances, et en assurant une conception et une architecture efficaces du système.

Avantages de PlantUML:

• Simplicité: Avec PlantUML, vous pouvez créer des diagrammes de composants en utilisant des
descriptions textuelles simples et intuitives, éliminant le besoin d’outils de dessin complexes.

• Intégration: PlantUML s’intègre de manière transparente à divers outils et plateformes, ce qui en
fait un choix polyvalent pour les développeurs et les architectes.

• Collaboration: Le forum PlantUML offre une plateforme aux utilisateurs pour discuter, partager
et demander de l’aide sur leurs diagrammes, favorisant ainsi une communauté de collaboration.

7.1 Composants
Les composants doivent être mis entre parenthèses.

Vous pouvez également utiliser le mot-clé component pour définir un composant . Et vous pouvez définir
un alias, en utilisant le mot-clé as . Cet alias sera utilisé plus tard, lors de la définition des relations

@startuml

[First component]
[Another component] as Comp2
component Comp3
component [Last\ncomponent] as Comp4

@enduml

7.2 Interfaces
Les interfaces sont définies à l’aide du symbole () (parce que cela ressemble à un cercle).

Vous pouvez aussi utiliser le mot-clé interface pour définir une interface. Vous pouvez aussi définir un
alias, à l’aide du mot-clé as. Cet alias pourrait être utilisé plus tard, lors de la définition des relations.

Nous verrons plus tard qu’il n’est pas obligatoire de définir les interfaces.

@startuml

() "First Interface"
() "Another interface" as Interf2
interface Interf3
interface "Last\ninterface" as Interf4

[component]
footer //Adding "component" to force diagram to be a **component diagram**//
@enduml

Guide de référence du langage PlantUML (1.2025.0) 159 / 580

7.3 Exemple de base 7 DIAGRAMME DE COMPOSANTS

7.3 Exemple de base
Les liens entre les éléments sont établis à l’aide de combinaisons de symboles de lignes pointillées (..),
de lignes droites (--) et de flèches (-->)

@startuml

DataAccess - [First Component]
[First Component] ..> HTTP : use

@enduml

7.4 Utilisation des notes
Vous pouvez utiliser les mots-clés note left of , note right of, note top of , note bottom of pour
définir des notes relatives à un seul objet.

Une note peut également être définie seule avec les mots-clés note , puis liée à d’autres objets à l’aide du
symbole ..

@startuml

interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

note left of HTTP : Web Service only

note right of [First Component]
A note can also
be on several lines

end note

@enduml

Guide de référence du langage PlantUML (1.2025.0) 160 / 580

7.5 Regroupement de composants 7 DIAGRAMME DE COMPOSANTS

7.5 Regroupement de composants
Vous pouvez utiliser plusieurs mots-clés pour regrouper des composants et des interfaces

• package

• node

• folder

• frame

• cloud

• database

@startuml

package "Some Group" {
HTTP - [First Component]
[Another Component]

}

node "Other Groups" {
FTP - [Second Component]
[First Component] --> FTP

}

cloud {
[Example 1]

}

database "MySql" {
folder "This is my folder" {
[Folder 3]

}
frame "Foo" {
[Frame 4]

}
}

[Another Component] --> [Example 1]
[Example 1] --> [Folder 3]
[Folder 3] --> [Frame 4]

@enduml

Guide de référence du langage PlantUML (1.2025.0) 161 / 580

7.6 Changement de direction des flèches 7 DIAGRAMME DE COMPOSANTS

7.6 Changement de direction des flèches
Par défaut, les liens entre les classes ont deux tirets -- et sont orientés verticalement. Il est possible
d’utiliser un lien horizontal en mettant un seul tiret (ou point) comme ceci

@startuml
[Component] --> Interface1
[Component] -> Interface2
@enduml

Vous pouvez également changer de direction en inversant le lien :

@startuml
Interface1 <-- [Component]
Interface2 <- [Component]
@enduml

Guide de référence du langage PlantUML (1.2025.0) 162 / 580

7.6 Changement de direction des flèches 7 DIAGRAMME DE COMPOSANTS

Il est également possible de changer la direction de la flèche en ajoutant les mots-clés left, right, up ou
down à l’intérieur de la flèche

@startuml
[Component] -left-> left
[Component] -right-> right
[Component] -up-> up
[Component] -down-> down
@enduml

Vous pouvez raccourcir la flèche en utilisant uniquement le premier caractère de la direction (par exemple,
-d- au lieu de -down-) ou les deux premiers caractères (-do-).

Veuillez noter que vous ne devez pas abuser de cette fonctionnalité : Graphviz donne généralement de
bons résultats sans modification.

Et avec le paramètre left to right direction paramètre

@startuml
left to right direction
[Component] -left-> left
[Component] -right-> right
[Component] -up-> up
[Component] -down-> down
@enduml

See also ’Change diagram orientation’ on [Deployment diagram](deployment-diagram) page.

Guide de référence du langage PlantUML (1.2025.0) 163 / 580

7.7 Utiliser la notation UML2 7 DIAGRAMME DE COMPOSANTS

7.7 Utiliser la notation UML2
Par défaut (à partir de la version v1.2020.13-14), la notation UML2 est utilisée.

@startuml

interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

@enduml

7.8 Utiliser la notation UML1
La commande skinparam componentStyle uml1 est utilisée pour passer à la notation UML1

@startuml
skinparam componentStyle uml1

interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

@enduml

7.9 Utiliser le style rectangle (supprime toute notation UML)
La commande skinparam componentStyle rectangle est utilisée pour changer vers le style rectangle
(sans aucune notation UML).

@startuml
skinparam componentStyle rectangle

interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

Guide de référence du langage PlantUML (1.2025.0) 164 / 580

7.10 Description longue 7 DIAGRAMME DE COMPOSANTS

@enduml

7.10 Description longue
Il est possible de mettre un long texte sur plusieurs lignes en utilisant des crochets.

@startuml
component comp1 [
This component
has a long comment
on several lines
]
@enduml

7.11 Couleurs individuelles
Vous pouvez spécifier une couleur après la définition du composant

@startuml
component [Web Server] #Yellow
@enduml

7.12 Sprites et stéréotypes
Vous pouvez utiliser des sprites dans les stéréotypes des composants.

@startuml
sprite $businessProcess [16x16/16] {
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFF0FFFFF
FFFFFFFFFF00FFFF
FF00000000000FFF
FF000000000000FF
FF00000000000FFF
FFFFFFFFFF00FFFF
FFFFFFFFFF0FFFFF
FFFFFFFFFFFFFFFF

Guide de référence du langage PlantUML (1.2025.0) 165 / 580

7.13 Skinparam 7 DIAGRAMME DE COMPOSANTS

FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
}

rectangle " End to End\nbusiness process" <<$businessProcess>> {
rectangle "inner process 1" <<$businessProcess>> as src
rectangle "inner process 2" <<$businessProcess>> as tgt
src -> tgt

}
@enduml

7.13 Skinparam
Vous pouvez utiliser la commande skinparam pour modifier les couleurs et les polices du dessin.

Vous pouvez utiliser cette commande :

• Dans la définition du diagramme, comme toutes les autres commandes ;

• Dans un fichier inclus;

• Dans un fichier de configuration, fourni dans la ligne de commande ou la tâche Ant.

Vous pouvez définir des couleurs et des polices spécifiques pour les composants et les interfaces stéréotypés

@startuml

skinparam interface {
backgroundColor RosyBrown
borderColor orange

}

skinparam component {
FontSize 13
BackgroundColor<<Apache>> Pink
BorderColor<<Apache>> #FF6655
FontName Courier
BorderColor black
BackgroundColor gold
ArrowFontName Impact
ArrowColor #FF6655
ArrowFontColor #777777

}

() "Data Access" as DA
Component "Web Server" as WS << Apache >>

DA - [First Component]
[First Component] ..> () HTTP : use
HTTP - WS

Guide de référence du langage PlantUML (1.2025.0) 166 / 580

7.14 Paramètre de style spécifique 7 DIAGRAMME DE COMPOSANTS

@enduml

@startuml

skinparam component {
backgroundColor<<static_lib>> DarkKhaki
backgroundColor<<shared_lib>> Green

}

skinparam node {
borderColor Green
backgroundColor Yellow
backgroundColor<<shared_node>> Magenta
}
skinparam databaseBackgroundColor Aqua

[AA] <<static_lib>>
[BB] <<shared_lib>>
[CC] <<static_lib>>

node node1
node node2 <<shared node>>
database Production

@enduml

7.14 Paramètre de style spécifique
7.14.1 componentStyle

• Par défaut (ou avec skinparam componentStyle uml2), vous avez une icône pour le composant

@startuml
skinparam BackgroundColor transparent
skinparam componentStyle uml2
component A {

component "A.1" {

Guide de référence du langage PlantUML (1.2025.0) 167 / 580

7.14 Paramètre de style spécifique 7 DIAGRAMME DE COMPOSANTS

}
component A.44 {

[A4.1]
}

component "A.2"
[A.3]
component A.5 [

A.5]
component A.6 [

]
}
[a]->[b]
@enduml

• Si vous voulez la supprimer, et n’avoir que le rectangle, vous pouvez utiliser skinparam componentStyle
rectangle

@startuml
skinparam BackgroundColor transparent
skinparam componentStyle rectangle
component A {

component "A.1" {
}

component A.44 {
[A4.1]

}
component "A.2"
[A.3]
component A.5 [

A.5]
component A.6 [

]
}
[a]->[b]
@enduml

Guide de référence du langage PlantUML (1.2025.0) 168 / 580

7.15 Masquer ou supprimer un composant non lié 7 DIAGRAMME DE COMPOSANTS

Ref. 10798]

7.15 Masquer ou supprimer un composant non lié
Par défaut, tous les composants sont affichés

@startuml
component C1
component C2
component C3
C1 -- C2
@enduml

Mais vous pouvez :

• hide @unlinked cacher des composants

@startuml
component C1
component C2
component C3
C1 -- C2

hide @unlinked
@enduml

• ou remove @unlinked supprimer des composants

@startuml
component C1
component C2

Guide de référence du langage PlantUML (1.2025.0) 169 / 580

7.16 Masquer, supprimer ou restaurer un composant balisé ou un joker7 DIAGRAMME DE COMPOSANTS

component C3
C1 -- C2

remove @unlinked
@enduml

[Réf. QA-11052]

7.16 Masquer, supprimer ou restaurer un composant balisé ou un joker
Vous pouvez placer $tags (en utilisant $) sur des composants, puis supprimer, masquer ou restaurer des
composants individuellement ou par balises.

Par défaut, tous les composants sont affichés

@startuml
component C1 $tag13
component C2
component C3 $tag13
C1 -- C2
@enduml

Mais vous pouvez :

• hide $tag13 composants

@startuml
component C1 $tag13
component C2
component C3 $tag13
C1 -- C2

hide $tag13
@enduml

Guide de référence du langage PlantUML (1.2025.0) 170 / 580

7.17 Display JSON Data on Component diagram 7 DIAGRAMME DE COMPOSANTS

• ou remove $tag13 composants

@startuml
component C1 $tag13
component C2
component C3 $tag13
C1 -- C2

remove $tag13
@enduml

• ou remove $tag13 and restore $tag1 composants

@startuml
component C1 $tag13 $tag1
component C2
component C3 $tag13
C1 -- C2

remove $tag13
restore $tag1
@enduml

• ou remove * and restore $tag1 composants

@startuml
component C1 $tag13 $tag1
component C2
component C3 $tag13
C1 -- C2

remove *
restore $tag1
@enduml

[Réf. QA-7337 et QA-11052]

7.17 Display JSON Data on Component diagram
7.17.1 Simple example

@startuml
allowmixing

component Component
() Interface

Guide de référence du langage PlantUML (1.2025.0) 171 / 580

7.18 Port [port, portIn, portOut] 7 DIAGRAMME DE COMPOSANTS

json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-15481]

For another example, see on JSON page.

7.18 Port [port, portIn, portOut]
You can add port with port, portinand portout keywords.

7.18.1 Port

@startuml
[c]
component C {

port p1
port p2
port p3
component c1

}

c --> p1
c --> p2
c --> p3
p1 --> c1
p2 --> c1
@enduml

Guide de référence du langage PlantUML (1.2025.0) 172 / 580

7.18 Port [port, portIn, portOut] 7 DIAGRAMME DE COMPOSANTS

7.18.2 PortIn

@startuml
[c]
component C {

portin p1
portin p2
portin p3
component c1

}

c --> p1
c --> p2
c --> p3
p1 --> c1
p2 --> c1
@enduml

7.18.3 PortOut

@startuml
component C {

portout p1
portout p2
portout p3
component c1

}
[o]
p1 --> o
p2 --> o
p3 --> o
c1 --> p1
@enduml

Guide de référence du langage PlantUML (1.2025.0) 173 / 580

7.18 Port [port, portIn, portOut] 7 DIAGRAMME DE COMPOSANTS

7.18.4 Mixing PortIn & PortOut

@startuml
[i]
component C {

portin p1
portin p2
portin p3
portout po1
portout po2
portout po3
component c1

}
[o]

i --> p1
i --> p2
i --> p3
p1 --> c1
p2 --> c1
po1 --> o
po2 --> o
po3 --> o
c1 --> po1
@enduml

Guide de référence du langage PlantUML (1.2025.0) 174 / 580

7.18 Port [port, portIn, portOut] 7 DIAGRAMME DE COMPOSANTS

Guide de référence du langage PlantUML (1.2025.0) 175 / 580

8 DIAGRAMME DE DÉPLOIEMENT

8 Diagramme de déploiement
Un diagramme de déploiement est un type de diagramme qui visualise l’architecture des systèmes,
montrant comment les composants logiciels sont déployés sur le matériel. Il fournit une image claire de
la distribution des composants sur différents nœuds, tels que les serveurs, les stations de travail et les
appareils.

Avec PlantUML, la création de diagrammes de déploiement devient un jeu d’enfant. La plateforme offre un
moyen simple et intuitif de concevoir ces diagrammes en utilisant du texte simple, assurant des itérations
rapides et un contrôle facile des versions. De plus, le forum PlantUML offre une communauté dynamique
où les utilisateurs peuvent demander de l’aide, partager des idées et collaborer sur des défis de création
de diagrammes. L’un des principaux avantages de PlantUML est sa capacité à s’intégrer de manière
transparente à divers outils et plateformes, ce qui en fait un choix privilégié pour les professionnels et les
passionnés.

8.1 Déclarer un élément
@startuml
action action
actor actor
actor/ "actor/"
agent agent
artifact artifact
boundary boundary
card card
circle circle
cloud cloud
collections collections
component component
control control
database database
entity entity
file file
folder folder
frame frame
hexagon hexagon
interface interface
label label
node node
package package
person person
process process
queue queue
rectangle rectangle
stack stack
storage storage
usecase usecase
usecase/ "usecase/"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 176 / 580

8.1 Déclarer un élément 8 DIAGRAMME DE DÉPLOIEMENT

Vous pouvez éventuellement mettre du texte en utilisant les crochets [] pour une longue description.

@startuml
folder folder [
This is a folder

You can use separator
====
of different kind
....
and style
]

node node [
This is a node

You can use separator
====
of different kind
....
and style
]

database database [
This is a database

You can use separator
====
of different kind
....
and style

Guide de référence du langage PlantUML (1.2025.0) 177 / 580

8.2 Declaring element (using short form) 8 DIAGRAMME DE DÉPLOIEMENT

]

usecase usecase [
This is a usecase

You can use separator
====
of different kind
....
and style
]

card card [
This is a card

You can use separator
====
of different kind
....
and style
<i><color:blue>(add from V1.2020.7)</color></i>
]
@enduml

8.2 Declaring element (using short form)
We can declare element using some short forms.

Long form Keyword Short form Keyword Long form example Short form example Ref.
actor : a : actor actor1 :actor2: Actors
component [c] component component1 [component2] Components
interface () i interface interface1 () "interface2" Interfaces
usecase (u) usecase usecase1 (usecase2) Usecases

8.2.1 Actor

@startuml

actor actor1
:actor2:

@enduml

Guide de référence du langage PlantUML (1.2025.0) 178 / 580

8.3 Linking or arrow 8 DIAGRAMME DE DÉPLOIEMENT

NB: There is an old syntax for actor with guillemet which is now deprecated and will be removed some
days. Please do not use in your diagram.

8.2.2 Component

@startuml

component component1
[component2]

@enduml

8.2.3 Interface

@startuml

interface interface1
() "interface2"

label "//interface example//"
@enduml

8.2.4 Usecase

@startuml

usecase usecase1
(usecase2)

@enduml

8.3 Linking or arrow
You can create simple links between elements with or without labels:

@startuml

node node1
node node2
node node3
node node4

Guide de référence du langage PlantUML (1.2025.0) 179 / 580

8.3 Linking or arrow 8 DIAGRAMME DE DÉPLOIEMENT

node node5
node1 -- node2 : label1
node1 .. node3 : label2
node1 ~~ node4 : label3
node1 == node5

@enduml

It is possible to use several types of links:

@startuml

artifact artifact1
artifact artifact2
artifact artifact3
artifact artifact4
artifact artifact5
artifact artifact6
artifact artifact7
artifact artifact8
artifact artifact9
artifact artifact10
artifact1 --> artifact2
artifact1 --* artifact3
artifact1 --o artifact4
artifact1 --+ artifact5
artifact1 --# artifact6
artifact1 -->> artifact7
artifact1 --0 artifact8
artifact1 --^ artifact9
artifact1 --(0 artifact10

@enduml

You can also have the following types:

@startuml

cloud cloud1
cloud cloud2
cloud cloud3
cloud cloud4

Guide de référence du langage PlantUML (1.2025.0) 180 / 580

8.3 Linking or arrow 8 DIAGRAMME DE DÉPLOIEMENT

cloud cloud5
cloud1 -0- cloud2
cloud1 -0)- cloud3
cloud1 -(0- cloud4
cloud1 -(0)- cloud5

@enduml

or another example:

@startuml
actor foo1
actor foo2
foo1 <-0-> foo2
foo1 <-(0)-> foo2

(ac1) -le(0)-> left1
ac1 -ri(0)-> right1
ac1 .up(0).> up1
ac1 ~up(0)~> up2
ac1 -do(0)-> down1
ac1 -do(0)-> down2

actor1 -0)- actor2

component comp1
component comp2
comp1 *-0)-+ comp2
[comp3] <-->> [comp4]

boundary b1
control c1
b1 -(0)- c1

component comp1
interface interf1
comp1 #~~(interf1

:mode1actor: -0)- fooa1
:mode1actorl: -ri0)- foo1l

[component1] 0)-(0-(0 [componentC]
() component3)-0-(0 "foo" [componentC]

[aze1] #-->> [aze2]
@enduml

Guide de référence du langage PlantUML (1.2025.0) 181 / 580

8.4 Bracketed arrow style 8 DIAGRAMME DE DÉPLOIEMENT

[Ref. QA-547 and QA-1736]

� See all type on Appendix.

8.4 Bracketed arrow style
Similar as Bracketed class relations (linking or arrow) style

8.4.1 Line style

It’s also possible to have explicitly bold, dashed, dotted, hidden or plain arrows:

• without label

@startuml
node foo
title Bracketed line style without label
foo --> bar
foo -[bold]-> bar1
foo -[dashed]-> bar2
foo -[dotted]-> bar3
foo -[hidden]-> bar4
foo -[plain]-> bar5
@enduml

• with label

@startuml
title Bracketed line style with label
node foo
foo --> bar : �
foo -[bold]-> bar1 : [bold]
foo -[dashed]-> bar2 : [dashed]
foo -[dotted]-> bar3 : [dotted]
foo -[hidden]-> bar4 : [hidden]
foo -[plain]-> bar5 : [plain]
@enduml

Guide de référence du langage PlantUML (1.2025.0) 182 / 580

8.4 Bracketed arrow style 8 DIAGRAMME DE DÉPLOIEMENT

[Adapted from QA-4181]

8.4.2 Line color

@startuml
title Bracketed line color
node foo
foo --> bar
foo -[#red]-> bar1 : [#red]
foo -[#green]-> bar2 : [#green]
foo -[#blue]-> bar3 : [#blue]
foo -[#blue;#yellow;#green]-> bar4
@enduml

8.4.3 Line thickness

@startuml
title Bracketed line thickness
node foo
foo --> bar : �
foo -[thickness=1]-> bar1 : [1]
foo -[thickness=2]-> bar2 : [2]
foo -[thickness=4]-> bar3 : [4]
foo -[thickness=8]-> bar4 : [8]
foo -[thickness=16]-> bar5 : [16]
@enduml

Guide de référence du langage PlantUML (1.2025.0) 183 / 580

8.5 Change arrow color and style (inline style) 8 DIAGRAMME DE DÉPLOIEMENT

[Adapted from QA-4949]

8.4.4 Mix

@startuml
title Bracketed line style mix
node foo
foo --> bar : �
foo -[#red,thickness=1]-> bar1 : [#red,1]
foo -[#red,dashed,thickness=2]-> bar2 : [#red,dashed,2]
foo -[#green,dashed,thickness=4]-> bar3 : [#green,dashed,4]
foo -[#blue,dotted,thickness=8]-> bar4 : [blue,dotted,8]
foo -[#blue,plain,thickness=16]-> bar5 : [blue,plain,16]
foo -[#blue;#green,dashed,thickness=4]-> bar6 : [blue;green,dashed,4]
@enduml

8.5 Change arrow color and style (inline style)
You can change the color or style of individual arrows using the inline following notation:

• #color;line.[bold|dashed|dotted];text:color

@startuml
node foo
foo --> bar : normal
foo --> bar1 #line:red;line.bold;text:red : red bold
foo --> bar2 #green;line.dashed;text:green : green dashed
foo --> bar3 #blue;line.dotted;text:blue : blue dotted
@enduml

Guide de référence du langage PlantUML (1.2025.0) 184 / 580

8.6 Change element color and style (inline style) 8 DIAGRAMME DE DÉPLOIEMENT

[Ref. QA-3770 and QA-3816] [See similar feature on class diagram]

8.6 Change element color and style (inline style)
You can change the color or style of individual element using the following notation:

• #[color|back:color];line:color;line.[bold|dashed|dotted];text:color

@startuml
agent a
cloud c #pink;line:red;line.bold;text:red
file f #palegreen;line:green;line.dashed;text:green
node n #aliceblue;line:blue;line.dotted;text:blue
@enduml

@startuml
agent a
cloud c #pink;line:red;line.bold;text:red [
c
cloud description
]
file f #palegreen;line:green;line.dashed;text:green {
[c1]
[c2]
}
frame frame {
node n #aliceblue;line:blue;line.dotted;text:blue
}
@enduml

[Ref. QA-6852]

Guide de référence du langage PlantUML (1.2025.0) 185 / 580

8.7 Nestable elements 8 DIAGRAMME DE DÉPLOIEMENT

8.7 Nestable elements
Here are the nestable elements:

@startuml
action action {
}
artifact artifact {
}
card card {
}
cloud cloud {
}
component component {
}
database database {
}
file file {
}
folder folder {
}
frame frame {
}
hexagon hexagon {
}
node node {
}
package package {
}
process process {
}
queue queue {
}
rectangle rectangle {
}
stack stack {
}
storage storage {
}
@enduml

8.8 Packages and nested elements
8.8.1 Example with one level

@startuml
artifact artifactVeryLOOOOOOOOOOOOOOOOOOOg as "artifact" {
file f1
}
card cardVeryLOOOOOOOOOOOOOOOOOOOg as "card" {
file f2
}
cloud cloudVeryLOOOOOOOOOOOOOOOOOOOg as "cloud" {
file f3
}
component componentVeryLOOOOOOOOOOOOOOOOOOOg as "component" {
file f4

Guide de référence du langage PlantUML (1.2025.0) 186 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DÉPLOIEMENT

}
database databaseVeryLOOOOOOOOOOOOOOOOOOOg as "database" {
file f5
}
file fileVeryLOOOOOOOOOOOOOOOOOOOg as "file" {
file f6
}
folder folderVeryLOOOOOOOOOOOOOOOOOOOg as "folder" {
file f7
}
frame frameVeryLOOOOOOOOOOOOOOOOOOOg as "frame" {
file f8
}
hexagon hexagonVeryLOOOOOOOOOOOOOOOOOOOg as "hexagon" {
file f9
}
node nodeVeryLOOOOOOOOOOOOOOOOOOOg as "node" {
file f10
}
package packageVeryLOOOOOOOOOOOOOOOOOOOg as "package" {
file f11
}
queue queueVeryLOOOOOOOOOOOOOOOOOOOg as "queue" {
file f12
}
rectangle rectangleVeryLOOOOOOOOOOOOOOOOOOOg as "rectangle" {
file f13
}
stack stackVeryLOOOOOOOOOOOOOOOOOOOg as "stack" {
file f14
}
storage storageVeryLOOOOOOOOOOOOOOOOOOOg as "storage" {
file f15
}
@enduml

8.8.2 Other example

@startuml
artifact Foo1 {

folder Foo2
}

folder Foo3 {
artifact Foo4

}

frame Foo5 {
database Foo6

}

cloud vpc {
node ec2 {

Guide de référence du langage PlantUML (1.2025.0) 187 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DÉPLOIEMENT

stack stack
}

}

@enduml

@startuml
node Foo1 {
cloud Foo2

}

cloud Foo3 {
frame Foo4

}

database Foo5 {
storage Foo6

}

storage Foo7 {
storage Foo8

}
@enduml

8.8.3 Full nesting

Here is all the nested elements:

• by alphabetical order:

@startuml
action action {
artifact artifact {
card card {
cloud cloud {
component component {
database database {
file file {
folder folder {
frame frame {
hexagon hexagon {
node node {
package package {

Guide de référence du langage PlantUML (1.2025.0) 188 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DÉPLOIEMENT

process process {
queue queue {
rectangle rectangle {
stack stack {
storage storage {
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 189 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DÉPLOIEMENT

Guide de référence du langage PlantUML (1.2025.0) 190 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DÉPLOIEMENT

• or reverse alphabetical order

@startuml
storage storage {
stack stack {
rectangle rectangle {
queue queue {
process process {
package package {
node node {
hexagon hexagon {
frame frame {
folder folder {
file file {
database database {
component component {
cloud cloud {
card card {
artifact artifact {
action action {
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 191 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DÉPLOIEMENT

Guide de référence du langage PlantUML (1.2025.0) 192 / 580

8.9 Alias 8 DIAGRAMME DE DÉPLOIEMENT

8.9 Alias
8.9.1 Simple alias with as

@startuml
node Node1 as n1
node "Node 2" as n2
file f1 as "File 1"
cloud c1 as "this
is
a
cloud"
cloud c2 [this
is
another
cloud]

n1 -> n2
n1 --> f1
f1 -> c1
c1 -> c2
@enduml

8.9.2 Examples of long alias

@startuml
actor "actor" as actorVeryLOOOOOOOOOOOOOOOOOOOg
agent "agent" as agentVeryLOOOOOOOOOOOOOOOOOOOg
artifact "artifact" as artifactVeryLOOOOOOOOOOOOOOOOOOOg
boundary "boundary" as boundaryVeryLOOOOOOOOOOOOOOOOOOOg
card "card" as cardVeryLOOOOOOOOOOOOOOOOOOOg
cloud "cloud" as cloudVeryLOOOOOOOOOOOOOOOOOOOg
collections "collections" as collectionsVeryLOOOOOOOOOOOOOOOOOOOg
component "component" as componentVeryLOOOOOOOOOOOOOOOOOOOg
control "control" as controlVeryLOOOOOOOOOOOOOOOOOOOg
database "database" as databaseVeryLOOOOOOOOOOOOOOOOOOOg
entity "entity" as entityVeryLOOOOOOOOOOOOOOOOOOOg
file "file" as fileVeryLOOOOOOOOOOOOOOOOOOOg
folder "folder" as folderVeryLOOOOOOOOOOOOOOOOOOOg
frame "frame" as frameVeryLOOOOOOOOOOOOOOOOOOOg
hexagon "hexagon" as hexagonVeryLOOOOOOOOOOOOOOOOOOOg
interface "interface" as interfaceVeryLOOOOOOOOOOOOOOOOOOOg
label "label" as labelVeryLOOOOOOOOOOOOOOOOOOOg
node "node" as nodeVeryLOOOOOOOOOOOOOOOOOOOg
package "package" as packageVeryLOOOOOOOOOOOOOOOOOOOg
person "person" as personVeryLOOOOOOOOOOOOOOOOOOOg
queue "queue" as queueVeryLOOOOOOOOOOOOOOOOOOOg

Guide de référence du langage PlantUML (1.2025.0) 193 / 580

8.9 Alias 8 DIAGRAMME DE DÉPLOIEMENT

stack "stack" as stackVeryLOOOOOOOOOOOOOOOOOOOg
rectangle "rectangle" as rectangleVeryLOOOOOOOOOOOOOOOOOOOg
storage "storage" as storageVeryLOOOOOOOOOOOOOOOOOOOg
usecase "usecase" as usecaseVeryLOOOOOOOOOOOOOOOOOOOg
@enduml

@startuml
actor actorVeryLOOOOOOOOOOOOOOOOOOOg as "actor"
agent agentVeryLOOOOOOOOOOOOOOOOOOOg as "agent"
artifact artifactVeryLOOOOOOOOOOOOOOOOOOOg as "artifact"
boundary boundaryVeryLOOOOOOOOOOOOOOOOOOOg as "boundary"
card cardVeryLOOOOOOOOOOOOOOOOOOOg as "card"
cloud cloudVeryLOOOOOOOOOOOOOOOOOOOg as "cloud"
collections collectionsVeryLOOOOOOOOOOOOOOOOOOOg as "collections"
component componentVeryLOOOOOOOOOOOOOOOOOOOg as "component"
control controlVeryLOOOOOOOOOOOOOOOOOOOg as "control"
database databaseVeryLOOOOOOOOOOOOOOOOOOOg as "database"
entity entityVeryLOOOOOOOOOOOOOOOOOOOg as "entity"
file fileVeryLOOOOOOOOOOOOOOOOOOOg as "file"
folder folderVeryLOOOOOOOOOOOOOOOOOOOg as "folder"
frame frameVeryLOOOOOOOOOOOOOOOOOOOg as "frame"
hexagon hexagonVeryLOOOOOOOOOOOOOOOOOOOg as "hexagon"
interface interfaceVeryLOOOOOOOOOOOOOOOOOOOg as "interface"
label labelVeryLOOOOOOOOOOOOOOOOOOOg as "label"
node nodeVeryLOOOOOOOOOOOOOOOOOOOg as "node"
package packageVeryLOOOOOOOOOOOOOOOOOOOg as "package"
person personVeryLOOOOOOOOOOOOOOOOOOOg as "person"
queue queueVeryLOOOOOOOOOOOOOOOOOOOg as "queue"
stack stackVeryLOOOOOOOOOOOOOOOOOOOg as "stack"
rectangle rectangleVeryLOOOOOOOOOOOOOOOOOOOg as "rectangle"
storage storageVeryLOOOOOOOOOOOOOOOOOOOg as "storage"

Guide de référence du langage PlantUML (1.2025.0) 194 / 580

8.10 Round corner 8 DIAGRAMME DE DÉPLOIEMENT

usecase usecaseVeryLOOOOOOOOOOOOOOOOOOOg as "usecase"
@enduml

[Ref. QA-12082]

8.10 Round corner
@startuml
skinparam rectangle {

roundCorner<<Concept>> 25
}

rectangle "Concept Model" <<Concept>> {
rectangle "Example 1" <<Concept>> as ex1
rectangle "Another rectangle"
}
@enduml

8.11 Specific SkinParameter
8.11.1 roundCorner

@startuml
skinparam roundCorner 15
actor actor

Guide de référence du langage PlantUML (1.2025.0) 195 / 580

8.12 Appendix: All type of arrow line 8 DIAGRAMME DE DÉPLOIEMENT

agent agent
artifact artifact
boundary boundary
card card
circle circle
cloud cloud
collections collections
component component
control control
database database
entity entity
file file
folder folder
frame frame
hexagon hexagon
interface interface
label label
node node
package package
person person
queue queue
rectangle rectangle
stack stack
storage storage
usecase usecase
@enduml

[Ref. QA-5299, QA-6915, QA-11943]

8.12 Appendix: All type of arrow line
@startuml

Guide de référence du langage PlantUML (1.2025.0) 196 / 580

8.13 Appendix: All type of arrow head or ’0’ arrow 8 DIAGRAMME DE DÉPLOIEMENT

left to right direction
skinparam nodesep 5

f3 ~~ b3 : ""~~""\n//dotted//
f2 .. b2 : ""..""\n//dashed//
f1 == b1 : ""==""\n//bold//
f0 -- b0 : ""--""\n//plain//
@enduml

8.13 Appendix: All type of arrow head or ’0’ arrow
8.13.1 Type of arrow head

@startuml
left to right direction
skinparam nodesep 5

f13 --0 b13 : ""--0""
f12 --@ b12 : ""--@""
f11 --:|> b11 : ""--:|>""
f10 --||> b10 : ""--||>""
f9 --|> b9 : ""--|>""
f8 --^ b8 : ""--^ ""
f7 --\\ b7 : ""--\\\\""
f6 --# b6 : ""--# ""
f5 --+ b5 : ""--+ ""
f4 --o b4 : ""--o ""
f3 --* b3 : ""--* ""
f2 -->> b2 : ""-->>""
f1 --> b1 : ""--> ""
f0 -- b0 : ""-- ""
@enduml

Guide de référence du langage PlantUML (1.2025.0) 197 / 580

8.13 Appendix: All type of arrow head or ’0’ arrow 8 DIAGRAMME DE DÉPLOIEMENT

8.13.2 Type of ’0’ arrow or circle arrow

@startuml
left to right direction
skinparam nodesep 5

f10 0--0 b10 : "" 0--0 ""
f9)--(b9 : "")--(""
f8 0)--(0 b8 : "" 0)--(0""
f7 0)-- b7 : "" 0)-- ""
f6 -0)- b6 : "" -0)- ""
f5 -(0)- b5 : "" -(0)-""

Guide de référence du langage PlantUML (1.2025.0) 198 / 580

8.14 Appendix: Test of inline style on all element 8 DIAGRAMME DE DÉPLOIEMENT

f4 -(0- b4 : "" -(0- ""
f3 --(0 b3 : "" --(0 ""
f2 --(b2 : "" --(""
f1 --0 b1 : "" --0 ""
@enduml

8.14 Appendix: Test of inline style on all element
8.14.1 Simple element

@startuml
action action #aliceblue;line:blue;line.dotted;text:blue
actor actor #aliceblue;line:blue;line.dotted;text:blue
actor/ "actor/" #aliceblue;line:blue;line.dotted;text:blue
agent agent #aliceblue;line:blue;line.dotted;text:blue
artifact artifact #aliceblue;line:blue;line.dotted;text:blue
boundary boundary #aliceblue;line:blue;line.dotted;text:blue
card card #aliceblue;line:blue;line.dotted;text:blue
circle circle #aliceblue;line:blue;line.dotted;text:blue
cloud cloud #aliceblue;line:blue;line.dotted;text:blue
collections collections #aliceblue;line:blue;line.dotted;text:blue
component component #aliceblue;line:blue;line.dotted;text:blue
control control #aliceblue;line:blue;line.dotted;text:blue
database database #aliceblue;line:blue;line.dotted;text:blue
entity entity #aliceblue;line:blue;line.dotted;text:blue
file file #aliceblue;line:blue;line.dotted;text:blue

Guide de référence du langage PlantUML (1.2025.0) 199 / 580

8.14 Appendix: Test of inline style on all element 8 DIAGRAMME DE DÉPLOIEMENT

folder folder #aliceblue;line:blue;line.dotted;text:blue
frame frame #aliceblue;line:blue;line.dotted;text:blue
hexagon hexagon #aliceblue;line:blue;line.dotted;text:blue
interface interface #aliceblue;line:blue;line.dotted;text:blue
label label #aliceblue;line:blue;line.dotted;text:blue
node node #aliceblue;line:blue;line.dotted;text:blue
package package #aliceblue;line:blue;line.dotted;text:blue
person person #aliceblue;line:blue;line.dotted;text:blue
process process #aliceblue;line:blue;line.dotted;text:blue
queue queue #aliceblue;line:blue;line.dotted;text:blue
rectangle rectangle #aliceblue;line:blue;line.dotted;text:blue
stack stack #aliceblue;line:blue;line.dotted;text:blue
storage storage #aliceblue;line:blue;line.dotted;text:blue
usecase usecase #aliceblue;line:blue;line.dotted;text:blue
usecase/ "usecase/" #aliceblue;line:blue;line.dotted;text:blue
@enduml

8.14.2 Nested element

8.14.3 Without sub-element

@startuml
action action #aliceblue;line:blue;line.dotted;text:blue {
}
artifact artifact #aliceblue;line:blue;line.dotted;text:blue {
}
card card #aliceblue;line:blue;line.dotted;text:blue {
}
cloud cloud #aliceblue;line:blue;line.dotted;text:blue {
}
component component #aliceblue;line:blue;line.dotted;text:blue {

Guide de référence du langage PlantUML (1.2025.0) 200 / 580

8.14 Appendix: Test of inline style on all element 8 DIAGRAMME DE DÉPLOIEMENT

}
database database #aliceblue;line:blue;line.dotted;text:blue {
}
file file #aliceblue;line:blue;line.dotted;text:blue {
}
folder folder #aliceblue;line:blue;line.dotted;text:blue {
}
frame frame #aliceblue;line:blue;line.dotted;text:blue {
}
hexagon hexagon #aliceblue;line:blue;line.dotted;text:blue {
}
node node #aliceblue;line:blue;line.dotted;text:blue {
}
package package #aliceblue;line:blue;line.dotted;text:blue {
}
process process #aliceblue;line:blue;line.dotted;text:blue {
}
queue queue #aliceblue;line:blue;line.dotted;text:blue {
}
rectangle rectangle #aliceblue;line:blue;line.dotted;text:blue {
}
stack stack #aliceblue;line:blue;line.dotted;text:blue {
}
storage storage #aliceblue;line:blue;line.dotted;text:blue {
}
@enduml

8.14.4 With sub-element

@startuml
action actionVeryLOOOOOOOOOOOOOOOOOOOg as "action" #aliceblue;line:blue;line.dotted;text:blue {
file f1
}
artifact artifactVeryLOOOOOOOOOOOOOOOOOOOg as "artifact" #aliceblue;line:blue;line.dotted;text:blue {
file f1
}
card cardVeryLOOOOOOOOOOOOOOOOOOOg as "card" #aliceblue;line:blue;line.dotted;text:blue {
file f2
}
cloud cloudVeryLOOOOOOOOOOOOOOOOOOOg as "cloud" #aliceblue;line:blue;line.dotted;text:blue {
file f3
}
component componentVeryLOOOOOOOOOOOOOOOOOOOg as "component" #aliceblue;line:blue;line.dotted;text:blue {
file f4
}
database databaseVeryLOOOOOOOOOOOOOOOOOOOg as "database" #aliceblue;line:blue;line.dotted;text:blue {
file f5
}
file fileVeryLOOOOOOOOOOOOOOOOOOOg as "file" #aliceblue;line:blue;line.dotted;text:blue {
file f6
}
folder folderVeryLOOOOOOOOOOOOOOOOOOOg as "folder" #aliceblue;line:blue;line.dotted;text:blue {
file f7
}
frame frameVeryLOOOOOOOOOOOOOOOOOOOg as "frame" #aliceblue;line:blue;line.dotted;text:blue {

Guide de référence du langage PlantUML (1.2025.0) 201 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

file f8
}
hexagon hexagonVeryLOOOOOOOOOOOOOOOOOOOg as "hexagon" #aliceblue;line:blue;line.dotted;text:blue {
file f9
}
node nodeVeryLOOOOOOOOOOOOOOOOOOOg as "node" #aliceblue;line:blue;line.dotted;text:blue {
file f10
}
package packageVeryLOOOOOOOOOOOOOOOOOOOg as "package" #aliceblue;line:blue;line.dotted;text:blue {
file f11
}
process processVeryLOOOOOOOOOOOOOOOOOOOg as "process" #aliceblue;line:blue;line.dotted;text:blue {
file f11
}
queue queueVeryLOOOOOOOOOOOOOOOOOOOg as "queue" #aliceblue;line:blue;line.dotted;text:blue {
file f12
}
rectangle rectangleVeryLOOOOOOOOOOOOOOOOOOOg as "rectangle" #aliceblue;line:blue;line.dotted;text:blue {
file f13
}
stack stackVeryLOOOOOOOOOOOOOOOOOOOg as "stack" #aliceblue;line:blue;line.dotted;text:blue {
file f14
}
storage storageVeryLOOOOOOOOOOOOOOOOOOOg as "storage" #aliceblue;line:blue;line.dotted;text:blue {
file f15
}
@enduml

8.15 Appendix: Test of style on all element
8.15.1 Simple element

8.15.2 Global style (on componentDiagram)

@startuml
<style>
componentDiagram {

BackGroundColor palegreen
LineThickness 1
LineColor red

}
document {

BackGroundColor white
}
</style>
actor actor
actor/ "actor/"
agent agent
artifact artifact
boundary boundary
card card
circle circle
cloud cloud
collections collections
component component

Guide de référence du langage PlantUML (1.2025.0) 202 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

control control
database database
entity entity
file file
folder folder
frame frame
hexagon hexagon
interface interface
label label
node node
package package
person person
queue queue
rectangle rectangle
stack stack
storage storage
usecase usecase
usecase/ "usecase/"
@enduml

8.15.3 Style for each element

@startuml
<style>
actor {

BackGroundColor #f80c12
LineThickness 1
LineColor black

}
agent {

BackGroundColor #f80c12

Guide de référence du langage PlantUML (1.2025.0) 203 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

LineThickness 1
LineColor black

}
artifact {
BackGroundColor #ee1100
LineThickness 1
LineColor black

}
boundary {
BackGroundColor #ee1100
LineThickness 1
LineColor black

}
card {
BackGroundColor #ff3311
LineThickness 1
LineColor black

}
circle {
BackGroundColor #ff3311
LineThickness 1
LineColor black

}
cloud {
BackGroundColor #ff4422
LineThickness 1
LineColor black

}
collections {
BackGroundColor #ff4422
LineThickness 1
LineColor black

}
component {
BackGroundColor #ff6644
LineThickness 1
LineColor black

}
control {
BackGroundColor #ff6644
LineThickness 1
LineColor black

}
database {
BackGroundColor #ff9933
LineThickness 1
LineColor black

}
entity {
BackGroundColor #feae2d
LineThickness 1
LineColor black

}
file {
BackGroundColor #feae2d
LineThickness 1
LineColor black

}

Guide de référence du langage PlantUML (1.2025.0) 204 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

folder {
BackGroundColor #ccbb33
LineThickness 1
LineColor black

}
frame {

BackGroundColor #d0c310
LineThickness 1
LineColor black

}
hexagon {

BackGroundColor #aacc22
LineThickness 1
LineColor black

}
interface {

BackGroundColor #69d025
LineThickness 1
LineColor black

}
label {

BackGroundColor black
LineThickness 1
LineColor black

}
node {

BackGroundColor #22ccaa
LineThickness 1
LineColor black

}
package {

BackGroundColor #12bdb9
LineThickness 1
LineColor black

}
person {

BackGroundColor #11aabb
LineThickness 1
LineColor black

}
queue {

BackGroundColor #11aabb
LineThickness 1
LineColor black

}
rectangle {

BackGroundColor #4444dd
LineThickness 1
LineColor black

}
stack {

BackGroundColor #3311bb
LineThickness 1
LineColor black

}
storage {

BackGroundColor #3b0cbd
LineThickness 1

Guide de référence du langage PlantUML (1.2025.0) 205 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

LineColor black
}
usecase {
BackGroundColor #442299
LineThickness 1
LineColor black

}
</style>
actor actor
actor/ "actor/"
agent agent
artifact artifact
boundary boundary
card card
circle circle
cloud cloud
collections collections
component component
control control
database database
entity entity
file file
folder folder
frame frame
hexagon hexagon
interface interface
label label
node node
package package
person person
queue queue
rectangle rectangle
stack stack
storage storage
usecase usecase
usecase/ "usecase/"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 206 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

[Ref. QA-13261]

8.15.4 Nested element (without level)

8.15.5 Global style (on componentDiagram)

@startuml
<style>
componentDiagram {

BackGroundColor palegreen
LineThickness 2
LineColor red

}
</style>
artifact artifact {
}
card card {
}
cloud cloud {
}
component component {
}
database database {
}
file file {
}
folder folder {
}
frame frame {
}
hexagon hexagon {

Guide de référence du langage PlantUML (1.2025.0) 207 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

}
node node {
}
package package {
}
queue queue {
}
rectangle rectangle {
}
stack stack {
}
storage storage {
}
@enduml

8.15.6 Style for each nested element

@startuml
<style>
artifact {

BackGroundColor #ee1100
LineThickness 1
LineColor black

}
card {

BackGroundColor #ff3311
LineThickness 1
LineColor black

}
cloud {

BackGroundColor #ff4422
LineThickness 1
LineColor black

}
component {

BackGroundColor #ff6644
LineThickness 1
LineColor black

}
database {

BackGroundColor #ff9933
LineThickness 1
LineColor black

}
file {

BackGroundColor #feae2d
LineThickness 1
LineColor black

}
folder {

BackGroundColor #ccbb33
LineThickness 1
LineColor black

}
frame {

Guide de référence du langage PlantUML (1.2025.0) 208 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

BackGroundColor #d0c310
LineThickness 1
LineColor black

}
hexagon {
BackGroundColor #aacc22
LineThickness 1
LineColor black

}
node {
BackGroundColor #22ccaa
LineThickness 1
LineColor black

}
package {
BackGroundColor #12bdb9
LineThickness 1
LineColor black

}
queue {
BackGroundColor #11aabb
LineThickness 1
LineColor black

}
rectangle {
BackGroundColor #4444dd
LineThickness 1
LineColor black

}
stack {
BackGroundColor #3311bb
LineThickness 1
LineColor black

}
storage {
BackGroundColor #3b0cbd
LineThickness 1
LineColor black

}

</style>
artifact artifact {
}
card card {
}
cloud cloud {
}
component component {
}
database database {
}
file file {
}
folder folder {
}
frame frame {
}
hexagon hexagon {

Guide de référence du langage PlantUML (1.2025.0) 209 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

}
node node {
}
package package {
}
queue queue {
}
rectangle rectangle {
}
stack stack {
}
storage storage {
}
@enduml

8.15.7 Nested element (with one level)

8.15.8 Global style (on componentDiagram)

@startuml
<style>
componentDiagram {

BackGroundColor palegreen
LineThickness 1
LineColor red

}
document {

BackGroundColor white
}
</style>
artifact e1 as "artifact" {
file f1
}
card e2 as "card" {
file f2
}
cloud e3 as "cloud" {
file f3
}
component e4 as "component" {
file f4
}
database e5 as "database" {
file f5
}
file e6 as "file" {
file f6
}
folder e7 as "folder" {
file f7
}
frame e8 as "frame" {
file f8
}
hexagon e9 as "hexagon" {
file f9

Guide de référence du langage PlantUML (1.2025.0) 210 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

}
node e10 as "node" {
file f10
}
package e11 as "package" {
file f11
}
queue e12 as "queue" {
file f12
}
rectangle e13 as "rectangle" {
file f13
}
stack e14 as "stack" {
file f14
}
storage e15 as "storage" {
file f15
}
@enduml

8.15.9 Style for each nested element

@startuml
<style>
artifact {

BackGroundColor #ee1100
LineThickness 1
LineColor black

}
card {

BackGroundColor #ff3311
LineThickness 1
LineColor black

}
cloud {

BackGroundColor #ff4422
LineThickness 1
LineColor black

}
component {

BackGroundColor #ff6644
LineThickness 1
LineColor black

}
database {

BackGroundColor #ff9933
LineThickness 1
LineColor black

}
file {

BackGroundColor #feae2d
LineThickness 1

Guide de référence du langage PlantUML (1.2025.0) 211 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DÉPLOIEMENT

LineColor black
}
folder {
BackGroundColor #ccbb33
LineThickness 1
LineColor black

}
frame {
BackGroundColor #d0c310
LineThickness 1
LineColor black

}
hexagon {
BackGroundColor #aacc22
LineThickness 1
LineColor black

}
node {
BackGroundColor #22ccaa
LineThickness 1
LineColor black

}
package {
BackGroundColor #12bdb9
LineThickness 1
LineColor black

}
queue {
BackGroundColor #11aabb
LineThickness 1
LineColor black

}
rectangle {
BackGroundColor #4444dd
LineThickness 1
LineColor black

}
stack {
BackGroundColor #3311bb
LineThickness 1
LineColor black

}
storage {
BackGroundColor #3b0cbd
LineThickness 1
LineColor black

}
</style>
artifact e1 as "artifact" {
file f1
}
card e2 as "card" {
file f2
}
cloud e3 as "cloud" {
file f3
}
component e4 as "component" {

Guide de référence du langage PlantUML (1.2025.0) 212 / 580

8.16 Appendix: Test of stereotype with style on all element 8 DIAGRAMME DE DÉPLOIEMENT

file f4
}
database e5 as "database" {
file f5
}
file e6 as "file" {
file f6
}
folder e7 as "folder" {
file f7
}
frame e8 as "frame" {
file f8
}
hexagon e9 as "hexagon" {
file f9
}
node e10 as "node" {
file f10
}
package e11 as "package" {
file f11
}
queue e12 as "queue" {
file f12
}
rectangle e13 as "rectangle" {
file f13
}
stack e14 as "stack" {
file f14
}
storage e15 as "storage" {
file f15
}
@enduml

8.16 Appendix: Test of stereotype with style on all element
8.16.1 Simple element

@startuml
<style>
.stereo {

BackgroundColor palegreen
}
</style>
actor actor << stereo >>
actor/ "actor/" << stereo >>
agent agent << stereo >>
artifact artifact << stereo >>
boundary boundary << stereo >>
card card << stereo >>
circle circle << stereo >>

Guide de référence du langage PlantUML (1.2025.0) 213 / 580

8.16 Appendix: Test of stereotype with style on all element 8 DIAGRAMME DE DÉPLOIEMENT

cloud cloud << stereo >>
collections collections << stereo >>
component component << stereo >>
control control << stereo >>
database database << stereo >>
entity entity << stereo >>
file file << stereo >>
folder folder << stereo >>
frame frame << stereo >>
hexagon hexagon << stereo >>
interface interface << stereo >>
label label << stereo >>
node node << stereo >>
package package << stereo >>
person person << stereo >>
queue queue << stereo >>
rectangle rectangle << stereo >>
stack stack << stereo >>
storage storage << stereo >>
usecase usecase << stereo >>
usecase/ "usecase/" << stereo >>
@enduml

Guide de référence du langage PlantUML (1.2025.0) 214 / 580

8.17 Display JSON Data on Deployment diagram 8 DIAGRAMME DE DÉPLOIEMENT

8.17 Display JSON Data on Deployment diagram
8.17.1 Simple example

@startuml
allowmixing

component Component
actor Actor
usecase Usecase
() Interface
node Node
cloud Cloud

json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-15481]

For another example, see on JSON page.

8.18 Mixing Deployment (Usecase, Component, Deployment) element within
a Class or Object diagram

In order to add a Deployment element or a State element within a Class or Object diagram, you can use
the allowmixing or allow_mixing directive.

8.18.1 Mixing all elements

@startuml

allowmixing

skinparam nodesep 10
abstract abstract
abstract class "abstract class"
annotation annotation

Guide de référence du langage PlantUML (1.2025.0) 215 / 580

8.18 Mixing Deployment (Usecase, Component, Deployment) element within a Class or Object
diagram 8 DIAGRAMME DE DÉPLOIEMENT

circle circle
() circle_short_form
class class
diamond diamond
<> diamond_short_form
entity entity
enum enum
exception exception
interface interface
metaclass metaclass
protocol protocol
stereotype stereotype
struct struct
object object
map map {
key => value

}
json JSON {

"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
action action
actor actor
actor/ "actor/"
agent agent
artifact artifact
boundary boundary
card card
circle circle
cloud cloud
collections collections
component component
control control
database database
entity entity
file file
folder folder
frame frame
hexagon hexagon
interface interface
label label
node node
package package
person person
process process
queue queue
rectangle rectangle
stack stack
storage storage
usecase usecase
usecase/ "usecase/"
state state
@enduml

Guide de référence du langage PlantUML (1.2025.0) 216 / 580

8.19 Port [port, portIn, portOut] 8 DIAGRAMME DE DÉPLOIEMENT

[Ref. QA-2335 and QA-5329]

8.19 Port [port, portIn, portOut]
You can added port with port, portinand portout keywords.

8.19.1 Port

@startuml
[c]
node node {

port p1
port p2
port p3
file f1

}

Guide de référence du langage PlantUML (1.2025.0) 217 / 580

8.19 Port [port, portIn, portOut] 8 DIAGRAMME DE DÉPLOIEMENT

c --> p1
c --> p2
c --> p3
p1 --> f1
p2 --> f1
@enduml

8.19.2 PortIn

@startuml
[c]
node node {

portin p1
portin p2
portin p3
file f1

}

c --> p1
c --> p2
c --> p3
p1 --> f1
p2 --> f1
@enduml

8.19.3 PortOut

@startuml
node node {

portout p1
portout p2

Guide de référence du langage PlantUML (1.2025.0) 218 / 580

8.19 Port [port, portIn, portOut] 8 DIAGRAMME DE DÉPLOIEMENT

portout p3
file f1

}
[o]
p1 --> o
p2 --> o
p3 --> o
f1 --> p1
@enduml

8.19.4 Mixing PortIn & PortOut

@startuml
[i]
node node {

portin p1
portin p2
portin p3
portout po1
portout po2
portout po3
file f1

}
[o]

i --> p1
i --> p2
i --> p3
p1 --> f1
p2 --> f1
po1 --> o
po2 --> o
po3 --> o
f1 --> po1
@enduml

Guide de référence du langage PlantUML (1.2025.0) 219 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DÉPLOIEMENT

8.20 Change diagram orientation
You can change (whole) diagram orientation with:

• top to bottom direction (by default)

• left to right direction

8.20.1 Top to bottom (by default)

8.20.2 With Graphviz (layout engine by default)

The main rule is: Nested element first, then simple element.

@startuml
card a
card b
package A {

card a1
card a2
card a3
card a4
card a5
package sub_a {
card sa1
card sa2
card sa3
}

}

package B {
card b1
card b2
card b3
card b4
card b5
package sub_b {
card sb1
card sb2

Guide de référence du langage PlantUML (1.2025.0) 220 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DÉPLOIEMENT

card sb3
}

}
@enduml

8.20.3 With Smetana (internal layout engine)

The main rule is the opposite: Simple element first, then nested element.

@startuml
!pragma layout smetana
card a
card b
package A {

card a1
card a2
card a3
card a4
card a5
package sub_a {
card sa1
card sa2
card sa3
}

}

package B {
card b1
card b2
card b3
card b4
card b5
package sub_b {
card sb1
card sb2
card sb3
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 221 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DÉPLOIEMENT

8.20.4 Left to right

8.20.5 With Graphviz (layout engine by default)

@startuml
left to right direction
card a
card b
package A {

card a1
card a2
card a3
card a4
card a5
package sub_a {
card sa1
card sa2
card sa3
}

}

package B {
card b1
card b2
card b3
card b4
card b5
package sub_b {
card sb1
card sb2
card sb3
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 222 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DÉPLOIEMENT

8.20.6 With Smetana (internal layout engine)

@startuml
!pragma layout smetana
left to right direction
card a
card b
package A {

card a1
card a2
card a3
card a4
card a5
package sub_a {
card sa1

Guide de référence du langage PlantUML (1.2025.0) 223 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DÉPLOIEMENT

card sa2
card sa3
}

}

package B {
card b1
card b2
card b3
card b4
card b5
package sub_b {
card sb1
card sb2
card sb3
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 224 / 580

9 DIAGRAMME D’ÉTAT

9 Diagramme d’état
Les diagrammes d’état fournissent une représentation visuelle des différents états dans lesquels un
système ou un objet peut se trouver, ainsi que des transitions entre ces états. Ils sont essentiels pour
modéliser le comportement dynamique des systèmes, en saisissant la manière dont ils réagissent à différents
événements au fil du temps. Les diagrammes d’état décrivent le cycle de vie du système, ce qui facilite
la compréhension, la conception et l’optimisation de son comportement.

Utilisation de PlantUML pour créer des diagrammes d’état offre plusieurs avantages :

• Langage basé sur le texte: Définir et visualiser rapidement les états et les transitions sans les
inconvénients du dessin manuel.

• Efficacité et cohérence: Assurez une création de diagramme rationalisée et un contrôle de version
facile.

• Polyvalence: S’intègre à diverses plates-formes de documentation et prend en charge plusieurs
formats de sortie.

• Open-Source & Community Support: Soutenu par une communauté solide qui contribue
continuellement à ses améliorations et offre des ressources inestimables.

9.1 Exemple simple
Vous devez utiliser [*] pour le début et la fin du diagramme d’état.

Utilisez --> pour les flèches.

@startuml

[*] --> State1
State1 --> [*]
State1 : this is a string
State1 : this is another string

State1 -> State2
State2 --> [*]

@enduml

9.2 Autre rendu
Il est possible d’utiliser la directive hide empty description pour afficher l’état de façon plus compact.

@startuml
hide empty description
[*] --> State1
State1 --> [*]
State1 : this is a string
State1 : this is another string

Guide de référence du langage PlantUML (1.2025.0) 225 / 580

9.3 État composite 9 DIAGRAMME D’ÉTAT

State1 -> State2
State2 --> [*]
@enduml

9.3 État composite
Un état peut également être composite. Vous devez alors le définir avec le mot-clé state et des accolades.

9.3.1 Sous-état interne

@startuml
scale 350 width
[*] --> NotShooting

state NotShooting {
[*] --> Idle
Idle --> Configuring : EvConfig
Configuring --> Idle : EvConfig

}

state Configuring {
[*] --> NewValueSelection
NewValueSelection --> NewValuePreview : EvNewValue
NewValuePreview --> NewValueSelection : EvNewValueRejected
NewValuePreview --> NewValueSelection : EvNewValueSaved

state NewValuePreview {
State1 -> State2

}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 226 / 580

9.3 État composite 9 DIAGRAMME D’ÉTAT

9.3.2 Lien entre sous-états

@startuml
state A {

state X {
}
state Y {
}

}

state B {
state Z {
}

}

X --> Z
Z --> Y
@enduml

[Ref. QA-3300]

Guide de référence du langage PlantUML (1.2025.0) 227 / 580

9.4 Nom long 9 DIAGRAMME D’ÉTAT

9.4 Nom long
Vous pouvez aussi utiliser le mot-clé state pour donner un nom avec des espaces à un état.

@startuml
scale 600 width

[*] -> State1
State1 --> State2 : Succeeded
State1 --> [*] : Aborted
State2 --> State3 : Succeeded
State2 --> [*] : Aborted
state State3 {

state "Accumulate Enough Data\nLong State Name" as long1
long1 : Just a test
[*] --> long1
long1 --> long1 : New Data
long1 --> ProcessData : Enough Data

}
State3 --> State3 : Failed
State3 --> [*] : Succeeded / Save Result
State3 --> [*] : Aborted

@enduml

Guide de référence du langage PlantUML (1.2025.0) 228 / 580

9.5 Historique de sous-état [[H], [H*]] 9 DIAGRAMME D’ÉTAT

9.5 Historique de sous-état [[H], [H*]]
Vous pouvez utiliser [H] pour l’historique et [H*] pour l’historique profond d’un sous-état.

@startuml
[*] -> State1
State1 --> State2 : Succeeded
State1 --> [*] : Aborted
State2 --> State3 : Succeeded
State2 --> [*] : Aborted
state State3 {

state "Accumulate Enough Data" as long1
long1 : Just a test
[*] --> long1
long1 --> long1 : New Data
long1 --> ProcessData : Enough Data
State2 --> [H]: Resume

}
State3 --> State2 : Pause
State2 --> State3[H*]: DeepResume
State3 --> State3 : Failed
State3 --> [*] : Succeeded / Save Result
State3 --> [*] : Aborted
@enduml

9.6 États parallèles [fork, join]
Il est possible d’afficher des états parallèles grâce aux stéréotypes <<fork>> et <<join>>.

Guide de référence du langage PlantUML (1.2025.0) 229 / 580

9.7 États concurrents [–, ||] 9 DIAGRAMME D’ÉTAT

@startuml

state fork_state <<fork>>
[*] --> fork_state
fork_state --> State2
fork_state --> State3

state join_state <<join>>
State2 --> join_state
State3 --> join_state
join_state --> State4
State4 --> [*]

@enduml

9.7 États concurrents [–, ||]
Vous pouvez définir un état concurrent dans un état composé en utilisant le symbole -- ou || comme
séparateur.

9.7.1 Séparateur horizontal --

@startuml
[*] --> Active

state Active {
[*] -> NumLockOff
NumLockOff --> NumLockOn : EvNumLockPressed
NumLockOn --> NumLockOff : EvNumLockPressed
--
[*] -> CapsLockOff
CapsLockOff --> CapsLockOn : EvCapsLockPressed
CapsLockOn --> CapsLockOff : EvCapsLockPressed
--
[*] -> ScrollLockOff

Guide de référence du langage PlantUML (1.2025.0) 230 / 580

9.7 États concurrents [–, ||] 9 DIAGRAMME D’ÉTAT

ScrollLockOff --> ScrollLockOn : EvCapsLockPressed
ScrollLockOn --> ScrollLockOff : EvCapsLockPressed

}

@enduml

9.7.2 Séparateur vertical ||

@startuml
[*] --> Active

state Active {
[*] -> NumLockOff
NumLockOff --> NumLockOn : EvNumLockPressed
NumLockOn --> NumLockOff : EvNumLockPressed
||
[*] -> CapsLockOff
CapsLockOff --> CapsLockOn : EvCapsLockPressed
CapsLockOn --> CapsLockOff : EvCapsLockPressed
||
[*] -> ScrollLockOff
ScrollLockOff --> ScrollLockOn : EvCapsLockPressed
ScrollLockOn --> ScrollLockOff : EvCapsLockPressed

}

@enduml

Guide de référence du langage PlantUML (1.2025.0) 231 / 580

9.8 Conditionnel [choice] 9 DIAGRAMME D’ÉTAT

[Ref. QA-3086]

9.8 Conditionnel [choice]
Le stéréotype <<choice>> peut être utilisé pour signifier des états conditionnels.

@startuml
state "Req(Id)" as ReqId <<sdlreceive>>
state "Minor(Id)" as MinorId
state "Major(Id)" as MajorId

state c <<choice>>

Idle --> ReqId
ReqId --> c
c --> MinorId : [Id <= 10]
c --> MajorId : [Id > 10]
@enduml

9.9 Exemple avec tous les stéréotypes [choice, fork, join, end]
@startuml
state choice1 <<choice>>

Guide de référence du langage PlantUML (1.2025.0) 232 / 580

9.9 Exemple avec tous les stéréotypes [choice, fork, join, end] 9 DIAGRAMME D’ÉTAT

state fork1 <<fork>>
state join2 <<join>>
state end3 <<end>>

[*] --> choice1 : de ""start""\nà ""choice""
choice1 --> fork1 : de ""choice""\nà ""fork""
choice1 --> join2 : de ""choice""\nà ""join""
choice1 --> end3 : de ""choice""\nà ""end""

fork1 ---> State1 : de ""fork""\nà ""state""
fork1 --> State2 : de ""fork""\nà ""state""

State2 --> join2 : de ""state""\nà ""join""
State1 --> [*] : de ""state""\nà ""end""

join2 --> [*] : de ""join""\nà ""end""
@enduml

[Réf. QA-404 et QA-1159]

[Ref. QA-404, QA-1159 and GH-887]

[Ref. QA-19174]

Guide de référence du langage PlantUML (1.2025.0) 233 / 580

9.10 Petits cercles [entryPoint, exitPoint] 9 DIAGRAMME D’ÉTAT

9.10 Petits cercles [entryPoint, exitPoint]
Vous pouvez ajouter de petits cercles [point] avec les stéréotypes <<entryPoint>> et <<exitPoint>> :

@startuml
state Somp {

state entry1 <<entryPoint>>
state entry2 <<entryPoint>>
state sin
entry1 --> sin
entry2 -> sin
sin -> sin2
sin2 --> exitA <<exitPoint>>

}

[*] --> entry1
exitA --> Foo
Foo1 -> entry2
@enduml

9.11 Petits carrés [inputPin, outputPin]
Vous pouvez ajouter de petits carrés [pin] avec les stéréotypes <<inputPin>> et <<outputPin>> :

@startuml
state Somp {

state entry1 <<inputPin>>
state entry2 <<inputPin>>
state sin
entry1 --> sin
entry2 -> sin
sin -> sin2
sin2 --> exitA <<outputPin>>

}

[*] --> entry1
exitA --> Foo
Foo1 -> entry2

Guide de référence du langage PlantUML (1.2025.0) 234 / 580

9.12 Multiples petits carrés [expansionInput, expansionOutput] 9 DIAGRAMME D’ÉTAT

@enduml

[Réf. QA-4309]

9.12 Multiples petits carrés [expansionInput, expansionOutput]
Vous pouvez ajouter de multiples petits carrés [expansion] avec les stéréotypes <<expansionInput>> et
<<expansionOutput>> :

@startuml
state Somp {

state entry1 <<expansionInput>>
state entry2 <<expansionInput>>
state sin
entry1 --> sin
entry2 -> sin
sin -> sin2
sin2 --> exitA <<expansionOutput>>

}

[*] --> entry1
exitA --> Foo
Foo1 -> entry2
@enduml

Guide de référence du langage PlantUML (1.2025.0) 235 / 580

9.13 Direction des flèches 9 DIAGRAMME D’ÉTAT

[Réf. QA-4309]

9.13 Direction des flèches
Vous pouvez utiliser -> pour les flèches horizontales. Il est aussi possible de forcer la direction de la flèche
avec la syntaxe suivante:

• -down-> (flèche par défaut)

• -right-> or ->

• -left->

• -up->

@startuml

[*] -up-> First
First -right-> Second
Second --> Third
Third -left-> Last

@enduml

Vous pouvez aussi utiliser une notation abrégée, avec soit le premier caractère de la direction (par exemple
-d- à la place de -down-) ou bien les deux premiers caractères (-do-).

Veuillez noter qu’il ne faut pas abuser de cette fonction : Graphviz donne généralement de bons résultats
sans peaufinage.

Guide de référence du langage PlantUML (1.2025.0) 236 / 580

9.14 Changer la couleur ou le style des flèches 9 DIAGRAMME D’ÉTAT

9.14 Changer la couleur ou le style des flèches
Vous pouvez modifier la couleur et/ou le style des flèches.

@startuml
State S1
State S2
S1 -[#DD00AA]-> S2
S1 -left[#yellow]-> S3
S1 -up[#red,dashed]-> S4
S1 -right[dotted,#blue]-> S5

X1 -[dashed]-> X2
Z1 -[dotted]-> Z2
Y1 -[#blue,bold]-> Y2
@enduml

[Réf. Incubation: Change line color in state diagrams]

9.15 Note
Vous pouvez définir des notes avec les mots clés suivant: note left of, note right of, note top of,
note bottom of

Vous pouvez aussi définir des notes sur plusieurs lignes.

@startuml

[*] --> Active
Active --> Inactive

note left of Active : this is a short\nnote

note right of Inactive
A note can also
be defined on
several lines

end note

@enduml

Guide de référence du langage PlantUML (1.2025.0) 237 / 580

9.16 Note sur un lien 9 DIAGRAMME D’ÉTAT

Vous pouvez aussi avoir des notes flottantes.

@startuml

state foo
note "This is a floating note" as N1

@enduml

9.16 Note sur un lien
Vous pouvez ajouter une note sur un lien entre états avec le mot clé note on link.

@startuml
[*] -> State1

State1 --> State2
note on link

this is a state-transition note
end note
@enduml

9.17 Plus de notes
Vous pouvez mettre des notes sur les états de composite

@startuml

[*] --> NotShooting

state "Not Shooting State" as NotShooting {
state "Idle mode" as Idle

Guide de référence du langage PlantUML (1.2025.0) 238 / 580

9.18 Changer les couleurs localement [Inline color] 9 DIAGRAMME D’ÉTAT

state "Configuring mode" as Configuring
[*] --> Idle
Idle --> Configuring : EvConfig
Configuring --> Idle : EvConfig

}

note right of NotShooting : This is a note on a composite state

@enduml

9.18 Changer les couleurs localement [Inline color]
@startuml
state CurrentSite #pink {

state HardwareSetup #lightblue {
state Site #brown
Site -[hidden]-> Controller
Controller -[hidden]-> Devices

}
state PresentationSetup{

Groups -[hidden]-> PlansAndGraphics
}
state Trends #FFFF77
state Schedule #magenta
state AlarmSupression

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 239 / 580

9.19 Skinparam 9 DIAGRAMME D’ÉTAT

[Réf. QA-1812]

9.19 Skinparam
Utilisez la commande skinparam pour changer la couleur et la mise en forme du texte du schéma.

Vous pouvez utiliser cette commande :

• Dans la définition du diagramme, comme pour les autres commandes,

• Dans un fichier inclus,

• Dans un fichier de configuration, renseigné dans la ligne de commande ou la tâche ANT.

Vous pouvez définir une couleur spécifique et une police d’écriture pour les états stéréotypés.

@startuml
skinparam backgroundColor LightYellow
skinparam state {

StartColor MediumBlue
EndColor Red
BackgroundColor Peru
BackgroundColor<<Warning>> Olive
BorderColor Gray
FontName Impact

}

[*] --> NotShooting

state "Not Shooting State" as NotShooting {
state "Idle mode" as Idle <<Warning>>
state "Configuring mode" as Configuring
[*] --> Idle
Idle --> Configuring : EvConfig
Configuring --> Idle : EvConfig

}

NotShooting --> [*]
@enduml

Guide de référence du langage PlantUML (1.2025.0) 240 / 580

9.20 Changement de style 9 DIAGRAMME D’ÉTAT

9.19.1 Test de tous les skinparam spécifiques aux diagrammes d’état:

@startuml
skinparam State {

AttributeFontColor blue
AttributeFontName serif
AttributeFontSize 9
AttributeFontStyle italic
BackgroundColor palegreen
BorderColor violet
EndColor gold
FontColor red
FontName Sanserif
FontSize 15
FontStyle bold
StartColor silver

}

state A : a a a\na
state B : b b b\nb

[*] -> A : start
A -> B : a2b
B -> [*] : end
@enduml

9.20 Changement de style
Vous pouvez changer de style

@startuml

Guide de référence du langage PlantUML (1.2025.0) 241 / 580

9.21 Modifier la couleur et le style d’un état (style en ligne) 9 DIAGRAMME D’ÉTAT

<style>
stateDiagram {

BackgroundColor Peru
'LineColor Gray
FontName Impact
FontColor Red
arrow {
FontSize 13
LineColor Blue

}
}
</style>

[*] --> NotShooting

state "Not Shooting State" as NotShooting {
state "Idle mode" as Idle <<Warning>>
state "Configuring mode" as Configuring
[*] --> Idle
Idle --> Configuring : EvConfig
Configuring --> Idle : EvConfig

}

NotShooting --> [*]
@enduml

[Ref. [GH-880](https://github.com/plantuml/plantuml/issues/880#issuecomment-1022278138)]

9.21 Modifier la couleur et le style d’un état (style en ligne)
Vous pouvez modifier la couleur ou le style d’un état individuel en utilisant la notation suivante

• #color ##[style]color

Avec la couleur de fond d’abord (#color), puis le style de ligne et la couleur de ligne (##[style]color)

Guide de référence du langage PlantUML (1.2025.0) 242 / 580

9.21 Modifier la couleur et le style d’un état (style en ligne) 9 DIAGRAMME D’ÉTAT

@startuml
state FooGradient #red-green ##00FFFF
state FooDashed #red|green ##[dashed]blue {
}
state FooDotted ##[dotted]blue {
}
state FooBold ##[bold] {
}
state Foo1 ##[dotted]green {
state inner1 ##[dotted]yellow
}

state out ##[dotted]gold

state Foo2 ##[bold]green {
state inner2 ##[dotted]yellow
}
inner1 -> inner2
out -> inner2
@enduml

[Réf. QA-1487]

• #color;line:color;line.[bold|dashed|dotted];text:color

TODO: FIXME � text:color semble ne pas être pris en compte TODO: FIXME

@startuml
@startuml
state FooGradient #red-green;line:00FFFF
state FooDashed #red|green;line.dashed;line:blue {
}
state FooDotted #line.dotted;line:blue {
}
state FooBold #line.bold {
}
state Foo1 #line.dotted;line:green {
state inner1 #line.dotted;line:yellow
}

state out #line.dotted;line:gold

state Foo2 #line.bold;line:green {
state inner2 #line.dotted;line:yellow
}
inner1 -> inner2
out -> inner2
@enduml
@enduml

Guide de référence du langage PlantUML (1.2025.0) 243 / 580

9.22 Alias 9 DIAGRAMME D’ÉTAT

@startuml
state s1 : s1 description
state s2 #pink;line:red;line.bold;text:red : s2 description
state s3 #palegreen;line:green;line.dashed;text:green : s3 description
state s4 #aliceblue;line:blue;line.dotted;text:blue : s4 description
@enduml

[Adapté de QA-3770]

9.22 Alias
With State you can use alias, like:

@startuml
state alias1
state "alias2"
state "long name" as alias3
state alias4 as "long name"

alias1 : ""state alias1""
alias2 : ""state "alias2"""
alias3 : ""state "long name" as alias3""
alias4 : ""state alias4 as "long name"""

alias1 -> alias2
alias2 -> alias3
alias3 -> alias4
@enduml

or:

@startuml
state alias1 : ""state alias1""
state "alias2" : ""state "alias2"""
state "long name" as alias3 : ""state "long name" as alias3""
state alias4 as "long name" : ""state alias4 as "long name"""

alias1 -> alias2
alias2 -> alias3
alias3 -> alias4
@enduml

Guide de référence du langage PlantUML (1.2025.0) 244 / 580

9.23 Display JSON Data on State diagram 9 DIAGRAMME D’ÉTAT

[Ref. QA-1748, QA-14560]

9.23 Display JSON Data on State diagram
9.23.1 Simple example

@startuml
state "A" as stateA
state "C" as stateC {
state B

}

json jsonJ {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-17275]

For another example, see on JSON page.

9.24 State description
You can add description to a state or to a composite state.

@startuml
hide empty description

state s0

state "This is the State 1" as s1 {
s1: State description
state s2
state s3: long descr.
state s4
s4: long descr.

}

[*] -> s0
s0 --> s2

s2 -> s3
s3 -> s4
@enduml

Guide de référence du langage PlantUML (1.2025.0) 245 / 580

9.25 Style for Nested State Body 9 DIAGRAMME D’ÉTAT

[Ref. QA-16719]

9.25 Style for Nested State Body
@startuml
<style>
.foo {

state,stateBody {
BackGroundColor lightblue;

}
}
</style>

state MainState <<foo>> {
state SubA

}
@enduml

[Ref. QA-16774]

Guide de référence du langage PlantUML (1.2025.0) 246 / 580

10 DIAGRAMME DE TEMPS

10 Diagramme de temps
Un diagramme de temps en UML est un type spécifique de diagramme d’interaction qui visualise les
contraintes de temps d’ un système. Il se concentre sur l’ordre chronologique des événements, en
montrant comment différents objets interagissent les uns avec les autres au fil du temps. Les diagrammes
de temps sont particulièrement utiles dans les systèmes en temps réel et les systèmes intégrés
pour comprendre le comportement des objets pendant une période donnée.

10.1 Définitions des participants
Les participants sont déclarés à l’aide des mots-clé consise ou robust, en fonction de la façon dont vous
souhaitez les dessiner.

• concise: Un signal simplifié conçu pour montrer le déplacement des données (utile pour les mes-
sages).

• robust: Un signal linéaire complexe conçu pour montrer la transition d’un état à un autre. Ce
signal peut avoir de nombreux états.

• clock: Un signal qui transitionne de façon répétée entre les états haut et bas à rythme régulier.

• binary: Un signal spécifique restreint à seulement deux états (binaire).

Les changements d’état sont notifiés avec la notation @ et le verbe is.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU is Waiting
WB is Processing

@300
WB is Waiting
@enduml

[Ref. [QA-14631](https:forum.plantuml.net/14631) and [QA-14647](https:forum.plantuml.net/14647)]

[Ref. QA-14631, QA-14647 and QA-11288]

10.2 Horloge et signaux binaires
It’s also possible to have binary and clock signal, using the following keywords:

• binary

• clock

@startuml
clock clk with period 1

Guide de référence du langage PlantUML (1.2025.0) 247 / 580

10.3 Ajout de messages 10 DIAGRAMME DE TEMPS

binary "Enable" as EN

@0
EN is low

@5
EN is high

@10
EN is low
@enduml

10.3 Ajout de messages
Vous pouvez rajouter des messages à l’aide de la syntaxe suivante.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU -> WB : URL
WU is Waiting
WB is Processing

@300
WB is Waiting
@enduml

10.4 Référence relative de temps
Avec la notation @, il est possible d’utiliser une notation relative du temps.

@startuml
robust "DNS Resolver" as DNS
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

Guide de référence du langage PlantUML (1.2025.0) 248 / 580

10.5 Points d’ancrage 10 DIAGRAMME DE TEMPS

DNS is Idle

@+100
WU -> WB : URL
WU is Waiting
WB is Processing

@+200
WB is Waiting
WB -> DNS@+50 : Resolve URL

@+100
DNS is Processing

@+300
DNS is Idle
@enduml

10.5 Points d’ancrage
Au lieu d’utiliser le temps absolu ou relatif sur un temps absolu, vous pouvez définir un temps comme
point d’ancrage en utilisant le mot clé as et en commençant le nom par un :

@XX as :<anchor point name>

@startuml
clock clk with period 1
binary "enable" as EN
concise "dataBus" as db

@0 as :start
@5 as :en_high
@10 as :en_low
@:en_high-2 as :en_highMinus2

@:start
EN is low
db is "0x0000"

@:en_high
EN is high

@:en_low
EN is low

@:en_highMinus2
db is "0xf23a"

Guide de référence du langage PlantUML (1.2025.0) 249 / 580

10.6 Définition participant par participant 10 DIAGRAMME DE TEMPS

@:en_high+6
db is "0x0000"
@enduml

10.6 Définition participant par participant
Plutôt que de déclarer le diagramme dans l’ordre chronologique, il est possible de le définir participant
par participant.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@WB
0 is idle
+200 is Proc.
+100 is Waiting

@WU
0 is Waiting
+500 is ok
@enduml

10.7 Choix du zoom
Il est possible de choisir une échelle d’affichage précise.

@startuml
concise "Web User" as WU
scale 100 as 50 pixels

@WU
0 is Waiting
+500 is ok
@enduml

Guide de référence du langage PlantUML (1.2025.0) 250 / 580

10.8 État initial 10 DIAGRAMME DE TEMPS

10.8 État initial
Vous pouvez également définir un état initial.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

WB is Initializing
WU is Absent

@WB
0 is idle
+200 is Processing
+100 is Waiting

@WU
0 is Waiting
+500 is ok
@enduml

10.9 État complexe
Un signal peut se trouver dans un état indéfini

@startuml
robust "Signal1" as S1
robust "Signal2" as S2
S1 has 0,1,2,hello
S2 has 0,1,2
@0
S1 is 0
S2 is 0
@100
S1 is {0,1} #SlateGrey
S2 is {0,1}
@200
S1 is 1
S2 is 0
@300
S1 is hello
S2 is {0,2}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 251 / 580

10.10 Hidden state 10 DIAGRAMME DE TEMPS

[Ref. [QA-11936](https:forum.plantuml.net/11936) and [QA-15933](https:forum.plantuml.net/15933)]

10.10 Hidden state
It is also possible to hide some state.

@startuml
concise "Web User" as WU

@0
WU is {-}

@100
WU is A1

@200
WU is {-}

@300
WU is {hidden}

@400
WU is A3

@500
WU is {-}
@enduml

[Ref. [QA-12222](https://forum.plantuml.net/12222)]

10.11 Masquer l’axe du temps
Il est possible de masquer l’axe du temps

@startuml
hide time-axis
concise "Web User" as WU

WU is Absent

@WU
0 is Waiting
+500 is ok

Guide de référence du langage PlantUML (1.2025.0) 252 / 580

10.12 Utilisation de l’heure et de la date 10 DIAGRAMME DE TEMPS

@enduml

10.12 Utilisation de l’heure et de la date
Il est possible d’utiliser l’heure ou la date.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@2019/07/02
WU is Idle
WB is Idle

@2019/07/04
WU is Waiting : some note
WB is Processing : some other note

@2019/07/05
WB is Waiting
@enduml

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@1:15:00
WU is Idle
WB is Idle

@1:16:30
WU is Waiting : some note
WB is Processing : some other note

@1:17:30
WB is Waiting
@enduml

Guide de référence du langage PlantUML (1.2025.0) 253 / 580

10.13 Change Date Format 10 DIAGRAMME DE TEMPS

[Ref. [QA-7019](https://forum.plantuml.net/7019/hh-mm-ss-time-format-in-timing-diagram)]

10.13 Change Date Format
It is also possible to change date format.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

use date format "YY-MM-dd"

@2019/07/02
WU is Idle
WB is Idle

@2019/07/04
WU is Waiting : some note
WB is Processing : some other note

@2019/07/05
WB is Waiting
@enduml

10.14 Manage time axis labels
You can manage the time-axis labels.

10.14.1 Label on each tick (by default)

@startuml
scale 31536000 as 40 pixels
use date format "yy-MM"

concise "OpenGL Desktop" as OD

@1992/01/01
OD is {hidden}

Guide de référence du langage PlantUML (1.2025.0) 254 / 580

10.14 Manage time axis labels 10 DIAGRAMME DE TEMPS

@1992/06/30
OD is 1.0

@1997/03/04
OD is 1.1

@1998/03/16
OD is 1.2

@2001/08/14
OD is 1.3

@2004/09/07
OD is 3.0

@2008/08/01
OD is 3.0

@2017/07/31
OD is 4.6

@enduml

10.14.2 Manual label (only when the state changes)

@startuml
scale 31536000 as 40 pixels

manual time-axis
use date format "yy-MM"

concise "OpenGL Desktop" as OD

@1992/01/01
OD is {hidden}

@1992/06/30
OD is 1.0

@1997/03/04
OD is 1.1

@1998/03/16
OD is 1.2

@2001/08/14
OD is 1.3

@2004/09/07
OD is 3.0

@2008/08/01
OD is 3.0

Guide de référence du langage PlantUML (1.2025.0) 255 / 580

10.15 Ajout de contraintes 10 DIAGRAMME DE TEMPS

@2017/07/31
OD is 4.6

@enduml

[Ref. GH-1020]

10.15 Ajout de contraintes
Il est possible d’afficher des contraintes de temps sur les diagrammes.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

WB is Initializing
WU is Absent

@WB
0 is idle
+200 is Processing
+100 is Waiting
WB@0 <-> @50 : {50 ms lag}

@WU
0 is Waiting
+500 is ok
@200 <-> @+150 : {150 ms}
@enduml

10.16 Période surlignée
Vous pouvez surligner une partie du diagramme

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

Guide de référence du langage PlantUML (1.2025.0) 256 / 580

10.17 Using notes 10 DIAGRAMME DE TEMPS

@100
WU -> WB : URL
WU is Waiting #LightCyan;line:Aqua

@200
WB is Proc.

@300
WU -> WB@350 : URL2
WB is Waiting

@+200
WU is ok

@+200
WB is Idle

highlight 200 to 450 #Gold;line:DimGrey : This is my caption
@enduml

[Ref. [QA-10868](https://forum.plantuml.net/10868/highlighted-periods-in-timing-diagrams)]

10.17 Using notes
You can use the note top of and note bottom of keywords to define notes related to a single object
or participant (available only for concise or binary object).

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU is Waiting
WB is Processing
note top of WU : first note\non several\nlines
note bottom of WU : second note\non several\nlines

@300
WB is Waiting
@enduml

Guide de référence du langage PlantUML (1.2025.0) 257 / 580

10.18 Ajout de textes 10 DIAGRAMME DE TEMPS

[Ref. QA-6877, GH-1465]

10.18 Ajout de textes
Vous pouvez ajouter éventuellement un titre, une entête, un pied de page, une légende ou un libellé :

@startuml
Title Un titre
header: Une entête
footer: Un pied de page
legend
Une légende
end legend
caption Un libellé

robust "Navigateur web" as WB
concise "Internaute" as WU

@0
WU is Inactif
WB is Inactif

@100
WU is EnAttente
WB is EnTraitement

@300
WB is EnAttente
@enduml

Guide de référence du langage PlantUML (1.2025.0) 258 / 580

10.19 Exemple complet 10 DIAGRAMME DE TEMPS

10.19 Exemple complet
Merci à Adam Rosien pour cet exemple

@startuml
concise "Client" as Client
concise "Server" as Server
concise "Response freshness" as Cache

Server is idle
Client is idle

@Client
0 is send
Client -> Server@+25 : GET
+25 is await
+75 is recv
+25 is idle
+25 is send
Client -> Server@+25 : GET\nIf-Modified-Since: 150
+25 is await
+50 is recv
+25 is idle
@100 <-> @275 : no need to re-request from server

@Server
25 is recv
+25 is work
+25 is send
Server -> Client@+25 : 200 OK\nExpires: 275
+25 is idle
+75 is recv
+25 is send
Server -> Client@+25 : 304 Not Modified
+25 is idle

@Cache
75 is fresh
+200 is stale
@enduml

Guide de référence du langage PlantUML (1.2025.0) 259 / 580

10.20 Exemple numérique 10 DIAGRAMME DE TEMPS

10.20 Exemple numérique
@startuml
scale 5 as 150 pixels

clock clk with period 1
binary "enable" as en
binary "R/W" as rw
binary "data Valid" as dv
concise "dataBus" as db
concise "address bus" as addr

@6 as :write_beg
@10 as :write_end

@15 as :read_beg
@19 as :read_end

@0
en is low
db is "0x0"
addr is "0x03f"
rw is low
dv is 0

@:write_beg-3
en is high

@:write_beg-2
db is "0xDEADBEEF"

@:write_beg-1
dv is 1
@:write_beg
rw is high

@:write_end
rw is low
dv is low
@:write_end+1
rw is low
db is "0x0"
addr is "0x23"

@12
dv is high

Guide de référence du langage PlantUML (1.2025.0) 260 / 580

10.21 Ajout de couleur 10 DIAGRAMME DE TEMPS

@13
db is "0xFFFF"

@20
en is low
dv is low
@21
db is "0x0"

highlight :write_beg to :write_end #Gold:Write
highlight :read_beg to :read_end #lightBlue:Read

db@:write_beg-1 <-> @:write_end : setup time
db@:write_beg-1 -> addr@:write_end+1 : hold
@enduml

10.21 Ajout de couleur
Vous pouvez ajouter de la couleur

@startuml
concise "LR" as LR
concise "ST" as ST

LR is AtPlace #palegreen
ST is AtLoad #gray

@LR
0 is Lowering
100 is Lowered #pink
350 is Releasing

@ST
200 is Moving
@enduml

Guide de référence du langage PlantUML (1.2025.0) 261 / 580

10.22 Using (global) style 10 DIAGRAMME DE TEMPS

[Réf. QA-5776]

10.22 Using (global) style
10.22.1 Without style (by default)

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

WB is Initializing
WU is Absent

@WB
0 is idle
+200 is Processing
+100 is Waiting
WB@0 <-> @50 : {50 ms lag}

@WU
0 is Waiting
+500 is ok
@200 <-> @+150 : {150 ms}
@enduml

10.22.2 With style

You can use style to change rendering of elements.

@startuml
<style>
timingDiagram {

document {
BackGroundColor SandyBrown

}
constraintArrow {
LineStyle 2-1
LineThickness 3
LineColor Blue

Guide de référence du langage PlantUML (1.2025.0) 262 / 580

10.23 Applying Colors to specific lines 10 DIAGRAMME DE TEMPS

}
}
</style>
robust "Web Browser" as WB
concise "Web User" as WU

WB is Initializing
WU is Absent

@WB
0 is idle
+200 is Processing
+100 is Waiting
WB@0 <-> @50 : {50 ms lag}

@WU
0 is Waiting
+500 is ok
@200 <-> @+150 : {150 ms}
@enduml

[Ref. QA-14340]

10.23 Applying Colors to specific lines
You can use the <style> tags and sterotyping to give a name to line attributes.

@startuml
<style>
timingDiagram {

.red {
LineColor red

}
.blue {
LineColor blue
LineThickness 5

}
}
</style>

clock clk with period 1
binary "Input Signal 1" as IS1
binary "Input Signal 2" as IS2 <<blue>>
binary "Output Signal 1" as OS1 <<red>>

@0
IS1 is low

Guide de référence du langage PlantUML (1.2025.0) 263 / 580

10.24 Compact mode 10 DIAGRAMME DE TEMPS

IS2 is high
OS1 is low
@2
OS1 is high
@4
OS1 is low
@5
IS1 is high
OS1 is high
@6
IS2 is low
@10
IS1 is low
OS1 is low
@enduml

[Ref. QA-15870]

10.24 Compact mode
You can use compact command to compact the timing layout.

10.24.1 By default

@startuml
robust "Web Browser" as WB
concise "Web User" as WU
robust "Web Browser2" as WB2

@0
WU is Waiting
WB is Idle
WB2 is Idle

@200
WB is Proc.

@300
WB is Waiting
WB2 is Waiting

@500
WU is ok

@700
WB is Idle
@enduml

Guide de référence du langage PlantUML (1.2025.0) 264 / 580

10.24 Compact mode 10 DIAGRAMME DE TEMPS

10.24.2 Global mode with mode compact

@startuml
mode compact
robust "Web Browser" as WB
concise "Web User" as WU
robust "Web Browser2" as WB2

@0
WU is Waiting
WB is Idle
WB2 is Idle

@200
WB is Proc.

@300
WB is Waiting
WB2 is Waiting

@500
WU is ok

@700
WB is Idle
@enduml

10.24.3 Local mode with only compact on element

@startuml
compact robust "Web Browser" as WB
compact concise "Web User" as WU
robust "Web Browser2" as WB2

@0
WU is Waiting
WB is Idle

Guide de référence du langage PlantUML (1.2025.0) 265 / 580

10.25 Scaling analog signal 10 DIAGRAMME DE TEMPS

WB2 is Idle

@200
WB is Proc.

@300
WB is Waiting
WB2 is Waiting

@500
WU is ok

@700
WB is Idle
@enduml

[Ref. QA-11130]

10.25 Scaling analog signal
You can scale analog signal.

10.25.1 Without scaling: 0-max (by default)

@startuml
title Between 0-max (by default)
analog "Analog" as A

@0
A is 350

@100
A is 450

@300
A is 350
@enduml

Guide de référence du langage PlantUML (1.2025.0) 266 / 580

10.26 Customise analog signal 10 DIAGRAMME DE TEMPS

10.25.2 With scaling: min-max

@startuml
title Between min-max
analog "Analog" between 350 and 450 as A

@0
A is 350

@100
A is 450

@300
A is 350
@enduml

[Ref. QA-17161]

10.26 Customise analog signal
10.26.1 Without any customisation (by default)

@startuml
analog "Vcore" as VDD
analog "VCC" as VCC

@0
VDD is 0
VCC is 3
@2
VDD is 0
@3
VDD is 6
VCC is 6
VDD@1 -> VCC@2 : "test"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 267 / 580

10.27 Order state of robust signal 10 DIAGRAMME DE TEMPS

10.26.2 With customisation (on scale, ticks and height)

@startuml
analog "Vcore" as VDD
analog "VCC" between -4.5 and 6.5 as VCC
VCC ticks num on multiple 3
VCC is 200 pixels height

@0
VDD is 0
VCC is 3
@2
VDD is 0
@3
VDD is 6
VCC is 6
VDD@1 -> VCC@2 : "test"
@enduml

[Ref. QA-11288]

10.27 Order state of robust signal
10.27.1 Without order (by default)

@startuml
robust "Flow rate" as rate

@0
rate is high

@5
rate is none

@6
rate is low
@enduml

Guide de référence du langage PlantUML (1.2025.0) 268 / 580

10.27 Order state of robust signal 10 DIAGRAMME DE TEMPS

10.27.2 With order

@startuml
robust "Flow rate" as rate
rate has high,low,none

@0
rate is high

@5
rate is none

@6
rate is low
@enduml

10.27.3 With order and label

@startuml
robust "Flow rate" as rate
rate has "35 gpm" as high
rate has "15 gpm" as low
rate has "0 gpm" as none

@0
rate is high

@5
rate is none

@6
rate is low
@enduml

[Ref. QA-6651]

Guide de référence du langage PlantUML (1.2025.0) 269 / 580

10.28 Defining a timing diagram 10 DIAGRAMME DE TEMPS

10.28 Defining a timing diagram
10.28.1 By Clock (@clk)

@startuml
clock "clk" as clk with period 50
concise "Signal1" as S1
robust "Signal2" as S2
binary "Signal3" as S3

@clk*0
S1 is 0
S2 is 0

@clk*1
S1 is 1
S3 is high

@clk*2
S3 is down

@clk*3
S1 is 1
S2 is 1
S3 is 1

@clk*4
S3 is down
@enduml

10.28.2 By Signal (@S)

@startuml
clock "clk" as clk with period 50
concise "Signal1" as S1
robust "Signal2" as S2
binary "Signal3" as S3

@S1
0 is 0
50 is 1
150 is 1

@S2
0 is 0
150 is 1

Guide de référence du langage PlantUML (1.2025.0) 270 / 580

10.28 Defining a timing diagram 10 DIAGRAMME DE TEMPS

@S3
50 is 1
100 is low
150 is high
200 is 0
@enduml

10.28.3 By Time (@time)

@startuml
clock "clk" as clk with period 50
concise "Signal1" as S1
robust "Signal2" as S2
binary "Signal3" as S3

@0
S1 is 0
S2 is 0

@50
S1 is 1
S3 is 1

@100
S3 is low

@150
S1 is 1
S2 is 1
S3 is high

@200
S3 is 0
@enduml

Guide de référence du langage PlantUML (1.2025.0) 271 / 580

10.29 Annotate signal with comment 10 DIAGRAMME DE TEMPS

[Ref. QA-9053]

10.29 Annotate signal with comment
@startuml
binary "Binary Serial Data" as D
robust "Robust" as R
concise "Concise" as C

@-3
D is low: idle
R is lo: idle
C is 1: idle
@-1
D is high: start
R is hi: start
C is 0: start

@0
D is low: 1 lsb
R is lo: 1 lsb
C is 1: lsb

@1
D is high: 0
R is hi: 0
C is 0

@6
D is low: 1
R is lo: 1
C is 1

@7
D is high: 0 msb
R is hi: 0 msb
C is 0: msb

@8
D is low: stop
R is lo: stop
C is 1: stop

@0 <-> @8 : Serial data bits for ASCII "A" (Little Endian)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 272 / 580

10.29 Annotate signal with comment 10 DIAGRAMME DE TEMPS

[Ref. QA-15762, and QH-888]

Guide de référence du langage PlantUML (1.2025.0) 273 / 580

11 DISPLAY JSON DATA

11 Display JSON Data
JSON format is widely used in software.

You can use PlantUML to visualize your data.

To activate this feature, the diagram must:

• begin with @startjson keyword

• end with @endjson keyword.

@startjson
{

"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@endjson

� If you are looking for how to manipulate and manage JSON data on PlantUML: see rather Preprocessing
JSON.

11.1 Complex example
You can use complex JSON structure.

@startjson
{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": [],
"spouse": null

}
@endjson

Guide de référence du langage PlantUML (1.2025.0) 274 / 580

11.2 Highlight parts 11 DISPLAY JSON DATA

11.2 Highlight parts
@startjson
#highlight "lastName"
#highlight "address" / "city"
#highlight "phoneNumbers" / "0" / "number"
{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 28,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": [],
"spouse": null

}
@endjson

11.3 Using different styles for highlight
It is possible to have different styles for different highlights.

@startjson

Guide de référence du langage PlantUML (1.2025.0) 275 / 580

11.4 JSON basic element 11 DISPLAY JSON DATA

<style>
.h1 {
BackGroundColor green
FontColor white
FontStyle italic

}
.h2 {
BackGroundColor red
FontColor white
FontStyle bold

}
</style>
#highlight "lastName"
#highlight "address" / "city" <<h1>>
#highlight "phoneNumbers" / "0" / "number" <<h2>>
{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 28,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": [],
"spouse": null

}
@endjson

[Ref. QA-15756, GH-1393]

11.4 JSON basic element
11.4.1 Synthesis of all JSON basic element

@startjson
{

Guide de référence du langage PlantUML (1.2025.0) 276 / 580

11.5 JSON array or table 11 DISPLAY JSON DATA

"null": null,
"true": true,
"false": false,
"JSON_Number": [-1, -1.1, "<color:green>TBC"],
"JSON_String": "a\nb\rc\td <color:green>TBC...",
"JSON_Object": {

"{}": {},
"k_int": 123,
"k_str": "abc",
"k_obj": {"k": "v"}

},
"JSON_Array" : [

[],
[true, false],
[-1, 1],
["a", "b", "c"],
["mix", null, true, 1, {"k": "v"}]

]
}
@endjson

11.5 JSON array or table
11.5.1 Array type

@startjson
{
"Numeric": [1, 2, 3],
"String ": ["v1a", "v2b", "v3c"],
"Boolean": [true, false, true]
}
@endjson

Guide de référence du langage PlantUML (1.2025.0) 277 / 580

11.6 JSON numbers 11 DISPLAY JSON DATA

11.5.2 Minimal array or table

11.5.3 Number array

@startjson
[1, 2, 3]
@endjson

11.5.4 String array

@startjson
["1a", "2b", "3c"]
@endjson

11.5.5 Boolean array

@startjson
[true, false, true]
@endjson

11.6 JSON numbers
@startjson
{
"DecimalNumber": [-1, 0, 1],
"DecimalNumber . Digits": [-1.1, 0.1, 1.1],
"DecimalNumber ExponentPart": [1E5]
}
@endjson

Guide de référence du langage PlantUML (1.2025.0) 278 / 580

11.7 JSON strings 11 DISPLAY JSON DATA

11.7 JSON strings
11.7.1 JSON Unicode

On JSON you can use Unicode directly or by using escaped form like \uXXXX.

@startjson
{

"<color:blue>code": "<color:blue>value",
"a\\u005Cb": "a\u005Cb",
"\\uD83D\\uDE10": "\uD83D\uDE10",
"�": "�"

}
@endjson

11.7.2 JSON two-character escape sequence

@startjson
{
"**legend**: character name": ["**two-character escape sequence**", "example (between 'a' and 'b')"],
"quotation mark character (U+0022)": ["\\\"", "a\"b"],
"reverse solidus character (U+005C)": ["\\\\", "a\\b"],
"solidus character (U+002F)": ["\\\/", "a\/b"],
"backspace character (U+0008)": ["\\b", "a\bb"],
"form feed character (U+000C)": ["\\f", "a\fb"],
"line feed character (U+000A)": ["\\n", "a\nb"],
"carriage return character (U+000D)": ["\\r", "a\rb"],
"character tabulation character (U+0009)": ["\\t", "a\tb"]

}
@endjson

Guide de référence du langage PlantUML (1.2025.0) 279 / 580

11.8 Minimal JSON examples 11 DISPLAY JSON DATA

TODO: FIXME FIXME or not �, on the same item as \n management in PlantUML � See Report Bug
on QA-13066 TODO: FIXME

@startjson
[
"\\\\",
"\\n",
"\\r",
"\\t"
]
@endjson

11.8 Minimal JSON examples
@startjson
"Hello world!"
@endjson

Guide de référence du langage PlantUML (1.2025.0) 280 / 580

11.9 Empty table or list 11 DISPLAY JSON DATA

@startjson
42
@endjson

@startjson
true
@endjson

(Examples come from STD 90 - Examples)

11.9 Empty table or list
@startjson
{

"empty_tab": [],
"empty_list": {}

}
@endjson

[Ref. QA-14397]

11.10 Using (global) style
11.10.1 Without style (by default)

@startjson
#highlight "1" / "hr"
[

{
"name": "Mark McGwire",
"hr": 65,
"avg": 0.278

},
{
"name": "Sammy Sosa",
"hr": 63,
"avg": 0.288

}
]
@endjson

Guide de référence du langage PlantUML (1.2025.0) 281 / 580

11.10 Using (global) style 11 DISPLAY JSON DATA

11.10.2 With style

You can use style to change rendering of elements.

@startjson
<style>
jsonDiagram {

node {
BackGroundColor Khaki
LineColor lightblue
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
RoundCorner 0
LineThickness 2
LineStyle 10-5
separator {
LineThickness 0.5
LineColor black
LineStyle 1-5

}
}
arrow {
BackGroundColor lightblue
LineColor green
LineThickness 2
LineStyle 2-5

}
highlight {
BackGroundColor red
FontColor white
FontStyle italic

}
}
</style>
#highlight "1" / "hr"
[

{
"name": "Mark McGwire",
"hr": 65,
"avg": 0.278

},
{
"name": "Sammy Sosa",
"hr": 63,
"avg": 0.288

}
]
@endjson

Guide de référence du langage PlantUML (1.2025.0) 282 / 580

11.11 Display JSON Data on Class or Object diagram 11 DISPLAY JSON DATA

[Adapted from QA-13123 and QA-13288]

11.11 Display JSON Data on Class or Object diagram
11.11.1 Simple example

@startuml
class Class
object Object
json JSON {

"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-15481]

11.11.2 Complex example: with all JSON basic element

@startuml
json "JSON basic element" as J {
"null": null,
"true": true,
"false": false,
"JSON_Number": [-1, -1.1, "<color:green>TBC"],
"JSON_String": "a\nb\rc\td <color:green>TBC...",
"JSON_Object": {

"{}": {},
"k_int": 123,
"k_str": "abc",
"k_obj": {"k": "v"}

},
"JSON_Array" : [

[],
[true, false],
[-1, 1],

Guide de référence du langage PlantUML (1.2025.0) 283 / 580

11.12 Display JSON Data on Deployment (Usecase, Component, Deployment) diagram11 DISPLAY JSON DATA

["a", "b", "c"],
["mix", null, true, 1, {"k": "v"}]

]
}
@enduml

11.12 Display JSON Data on Deployment (Usecase, Component, Deploy-
ment) diagram

11.12.1 Simple example

@startuml
allowmixing

component Component
actor Actor
usecase Usecase
() Interface
node Node
cloud Cloud

json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 284 / 580

11.13 Display JSON Data on State diagram 11 DISPLAY JSON DATA

[Ref. QA-15481]

Complex example: with arrow

@startuml
allowmixing

agent Agent
stack {

json "JSON_file.json" as J {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
}
database Database

Agent -> J
J -> Database
@enduml

11.13 Display JSON Data on State diagram
11.13.1 Simple example

@startuml
state "A" as stateA
state "C" as stateC {
state B

}

Guide de référence du langage PlantUML (1.2025.0) 285 / 580

11.14 Creole on JSON 11 DISPLAY JSON DATA

json J {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

}
@enduml

[Ref. QA-17275]

11.14 Creole on JSON
You can use Creole or HTML Creole on JSON diagram:

@startjson
{
"Creole":

{
"wave": "~~wave~~",
"bold": "**bold**",
"italics": "//italics//",
"stricken-out": "--stricken-out--",
"underlined": "__underlined__",
"not-underlined": "~__not underlined__",
"wave-underlined": "~~wave-underlined~~"
},

"HTML Creole":
{
"bold": "bold",
"italics": "<i>italics",
"monospaced": "<font:monospaced>monospaced",
"stroked": "<s>stroked",
"underlined": "<u>underlined",
"waved": "<w>waved",
"green-stroked": "<s:green>stroked",
"red-underlined": "<u:red>underlined",
"blue-waved": "<w:#0000FF>waved",
"Blue": "<color:blue>Blue",
"Orange": "<back:orange>Orange background",
"big": "<size:20>big"
},

"Graphic":
{
"OpenIconic": "account-login <&account-login>",
"Unicode": "This is <U+221E> long",
"Emoji": "<:calendar:> Calendar",
"Image": "<img:https://plantuml.com/logo3.png>"
}

}
@endjson

Guide de référence du langage PlantUML (1.2025.0) 286 / 580

11.14 Creole on JSON 11 DISPLAY JSON DATA

Guide de référence du langage PlantUML (1.2025.0) 287 / 580

12 DISPLAY YAML DATA

12 Display YAML Data
YAML format is widely used in software.

You can use PlantUML to visualize your data.

To activate this feature, the diagram must:

• begin with @startyaml keyword

• end with @endyaml keyword.

@startyaml
fruit: Apple
size: Large
color:

- Red
- Green

@endyaml

12.1 Complex example
@startyaml
doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:
- huey
- dewey
- louie
- fred
xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5
partridges:
count: 1
location: "a pear tree"
turtle-doves: two
@endyaml

Guide de référence du langage PlantUML (1.2025.0) 288 / 580

12.2 Specific key (with symbols or unicode) 12 DISPLAY YAML DATA

12.2 Specific key (with symbols or unicode)
@startyaml
@fruit: Apple
$size: Large
&color: Red
�: Heart
‰: Per mille
@endyaml

[Ref. QA-13376]

12.3 Highlight parts
12.3.1 Normal style

@startyaml
#highlight "french-hens"
#highlight "xmas-fifth-day" / "partridges"

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:
- huey
- dewey
- louie
- fred
xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5
partridges:
count: 1
location: "a pear tree"
turtle-doves: two
@endyaml

Guide de référence du langage PlantUML (1.2025.0) 289 / 580

12.4 Using different styles for highlight 12 DISPLAY YAML DATA

12.3.2 Customised style

@startyaml
<style>
yamlDiagram {

highlight {
BackGroundColor red
FontColor white
FontStyle italic

}
}
</style>
#highlight "french-hens"
#highlight "xmas-fifth-day" / "partridges"

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:
- huey
- dewey
- louie
- fred
xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5
partridges:
count: 1
location: "a pear tree"
turtle-doves: two
@endyaml

[Ref. QA-13288]

12.4 Using different styles for highlight
It is possible to have different styles for different highlights.

@startyaml
<style>

.h1 {
BackGroundColor green
FontColor white

Guide de référence du langage PlantUML (1.2025.0) 290 / 580

12.5 Using (global) style 12 DISPLAY YAML DATA

FontStyle italic
}
.h2 {
BackGroundColor red
FontColor white
FontStyle italic

}
</style>
#highlight "french-hens" <<h1>>
#highlight "xmas-fifth-day" / "partridges" <<h2>>

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:
- huey
- dewey
- louie
- fred
xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5
partridges:
count: 1
location: "a pear tree"
turtle-doves: two
@endyaml

[Ref. QA-15756, GH-1393]

12.5 Using (global) style
12.5.1 Without style (by default)

@startyaml
-
name: Mark McGwire
hr: 65
avg: 0.278

-
name: Sammy Sosa
hr: 63

Guide de référence du langage PlantUML (1.2025.0) 291 / 580

12.5 Using (global) style 12 DISPLAY YAML DATA

avg: 0.288
@endyaml

12.5.2 With style

You can use style to change rendering of elements.

@startyaml
<style>
yamlDiagram {

node {
BackGroundColor lightblue
LineColor lightblue
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor Khaki
RoundCorner 0
LineThickness 2
LineStyle 10-5
separator {
LineThickness 0.5
LineColor black
LineStyle 1-5

}
}
arrow {
BackGroundColor lightblue
LineColor green
LineThickness 2
LineStyle 2-5

}
}
</style>

-
name: Mark McGwire
hr: 65
avg: 0.278

-
name: Sammy Sosa
hr: 63
avg: 0.288

@endyaml

Guide de référence du langage PlantUML (1.2025.0) 292 / 580

12.6 Creole on YAML 12 DISPLAY YAML DATA

[Ref. QA-13123]

12.6 Creole on YAML
You can use Creole or HTML Creole on YAML diagram:

@startyaml
Creole:

wave: ~~wave~~
bold: **bold**
italics: //italics//
monospaced: ""monospaced""
stricken-out: --stricken-out--
underlined: __underlined__
not-underlined: ~__not underlined__
wave-underlined: ~~wave-underlined~~

HTML Creole:
bold: bold
italics: <i>italics
monospaced: <font:monospaced>monospaced
stroked: <s>stroked
underlined: <u>underlined
waved: <w>waved
green-stroked: <s:green>stroked
red-underlined: <u:red>underlined
blue-waved: <w:#0000FF>waved
Blue: <color:blue>Blue
Orange: <back:orange>Orange background
big: <size:20>big

Graphic:
OpenIconic: account-login <&account-login>
Unicode: This is <U+221E> long
Emoji: <:calendar:> Calendar
Image: <img:https://plantuml.com/logo3.png>

@endyaml

Guide de référence du langage PlantUML (1.2025.0) 293 / 580

12.6 Creole on YAML 12 DISPLAY YAML DATA

Guide de référence du langage PlantUML (1.2025.0) 294 / 580

13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

13 Diagramme de réseau avec nwdiag
Un diagramme de réseau est une représentation visuelle d’un réseau informatique ou de télécommuni-
cations. Il illustre la disposition et les interconnexions des composants du réseau, notamment les
serveurs, les routeurs, les commutateurs, les concentrateurs et les périphériques. Les diagrammes de
réseau sont des outils précieux pour les ingénieurs et les administrateurs de réseau, qui peuvent ainsi
comprendre, configurer et dépanner les réseaux. Ils sont également essentiels pour visualiser la
structure et le flux des données dans un réseau, garantissant ainsi des performances et une sécurité
optimales.

nwdiag, développé par Takeshi Komiya, fournit une plateforme rationalisée pour esquisser rapidement
des diagrammes de réseau. Nous remercions Takeshi pour cet outil innovant!

Grâce à sa syntaxe intuitive, nwdiag a été intégré de manière transparente dans PlantUML. Les exemples
présentés ici sont inspirés de ceux documentés par Takeshi.

13.1 Diagramme simple
13.1.1 Définir un réseau

@startuml
nwdiag {

network dmz {
address = "210.x.x.x/24"

}
}
@enduml

13.1.2 Définir certains éléments ou serveurs sur un réseau

@startuml
nwdiag {

network dmz {
address = "210.x.x.x/24"

web01 [address = "210.x.x.1"];
web02 [address = "210.x.x.2"];

}
}
@enduml

13.1.3 Exemple complet

@startuml
nwdiag {

network dmz {
address = "210.x.x.x/24"

web01 [address = "210.x.x.1"];

Guide de référence du langage PlantUML (1.2025.0) 295 / 580

13.2 Define multiple addresses 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

web02 [address = "210.x.x.2"];
}
network internal {

address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];
db01;
db02;

}
}
@enduml

13.2 Define multiple addresses
@startuml
nwdiag {

network dmz {
address = "210.x.x.x/24"

// set multiple addresses (using comma)
web01 [address = "210.x.x.1, 210.x.x.20"];
web02 [address = "210.x.x.2"];

}
network internal {

address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];
db01;
db02;

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 296 / 580

13.3 Grouping nodes 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

13.3 Grouping nodes
13.3.1 Define group inside network definitions

@startuml
nwdiag {

network Sample_front {
address = "192.168.10.0/24";

// define group
group web {
web01 [address = ".1"];
web02 [address = ".2"];

}
}
network Sample_back {
address = "192.168.20.0/24";
web01 [address = ".1"];
web02 [address = ".2"];
db01 [address = ".101"];
db02 [address = ".102"];

// define network using defined nodes
group db {
db01;
db02;

}
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 297 / 580

13.3 Grouping nodes 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

13.3.2 Define group outside of network definitions

@startuml
nwdiag {

// define group outside of network definitions
group {
color = "#FFAAAA";

web01;
web02;
db01;

}

network dmz {
web01;
web02;

}
network internal {
web01;
web02;
db01;
db02;

}
}
@enduml

13.3.3 Define several groups on same network

13.3.4 Example with 2 group

@startuml
nwdiag {

Guide de référence du langage PlantUML (1.2025.0) 298 / 580

13.3 Grouping nodes 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

group {
color = "#FFaaaa";
web01;
db01;

}
group {

color = "#aaaaFF";
web02;
db02;

}
network dmz {

address = "210.x.x.x/24"

web01 [address = "210.x.x.1"];
web02 [address = "210.x.x.2"];

}
network internal {

address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];
db01 ;
db02 ;

}
}
@enduml

[Ref. QA-12663]

13.3.5 Example with 3 groups

@startuml
nwdiag {

group {
color = "#FFaaaa";
web01;
db01;

}
group {
color = "#aaFFaa";
web02;
db02;

}
group {
color = "#aaaaFF";

Guide de référence du langage PlantUML (1.2025.0) 299 / 580

13.4 Extended Syntax (for network or group) 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

web03;
db03;

}

network dmz {
web01;
web02;
web03;

}
network internal {

web01;
db01 ;
web02;
db02 ;
web03;
db03;

}
}
@enduml

[Ref. QA-13138]

13.4 Extended Syntax (for network or group)
13.4.1 Network

For network or network’s component, you can add or change:

• addresses (separated by comma ,);

• color;

• description;

• shape.

@startuml
nwdiag {

network Sample_front {
address = "192.168.10.0/24"
color = "red"

// define group
group web {
web01 [address = ".1, .2", shape = "node"]
web02 [address = ".2, .3"]

}
}
network Sample_back {
address = "192.168.20.0/24"

Guide de référence du langage PlantUML (1.2025.0) 300 / 580

13.4 Extended Syntax (for network or group) 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

color = "palegreen"
web01 [address = ".1"]
web02 [address = ".2"]
db01 [address = ".101", shape = database]
db02 [address = ".102"]

// define network using defined nodes
group db {
db01;
db02;

}
}

}
@enduml

13.4.2 Group

For a group, you can add or change:

• color;

• description.

@startuml
nwdiag {

group {
color = "#CCFFCC";
description = "Long group description";

web01;
web02;
db01;

}

network dmz {
web01;
web02;

}
network internal {
web01;
web02;
db01 [address = ".101", shape = database];

}
}

Guide de référence du langage PlantUML (1.2025.0) 301 / 580

13.5 Using Sprites 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

@enduml

[Ref. QA-12056]

13.5 Using Sprites
You can use all sprites (icons) from the Standard Library or any other library.

Use the notation <$sprite> to use a sprite, \n to make a new line, or any other Creole syntax.

@startuml
!include <office/Servers/application_server>
!include <office/Servers/database_server>

nwdiag {
network dmz {

address = "210.x.x.x/24"

// set multiple addresses (using comma)
web01 [address = "210.x.x.1, 210.x.x.20", description = "<$application_server>\n web01"]
web02 [address = "210.x.x.2", description = "<$application_server>\n web02"];

}
network internal {

address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];
db01 [address = "172.x.x.100", description = "<$database_server>\n db01"];
db02 [address = "172.x.x.101", description = "<$database_server>\n db02"];

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 302 / 580

13.6 Using OpenIconic 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

[Ref. QA-11862]

13.6 Using OpenIconic
You can also use the icons from OpenIconic in network or node descriptions.

Use the notation <&icon> to make an icon, <&icon*n> to multiply the size by a factor n, and \n to make
a newline:

@startuml

nwdiag {
group nightly {
color = "#FFAAAA";
description = "<&clock> Restarted nightly <&clock>";
web02;
db01;

}
network dmz {

address = "210.x.x.x/24"

user [description = "<&person*4.5>\n user1"];
// set multiple addresses (using comma)
web01 [address = "210.x.x.1, 210.x.x.20", description = "<&cog*4>\nweb01"]
web02 [address = "210.x.x.2", description = "<&cog*4>\nweb02"];

}
network internal {

address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];
db01 [address = "172.x.x.100", description = "<&spreadsheet*4>\n db01"];
db02 [address = "172.x.x.101", description = "<&spreadsheet*4>\n db02"];
ptr [address = "172.x.x.110", description = "<&print*4>\n ptr01"];

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 303 / 580

13.7 Same nodes on more than two networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

13.7 Same nodes on more than two networks
You can use same nodes on different networks (more than two networks); nwdiag use in this case ’jump
line’ over networks.

@startuml
nwdiag {

// define group at outside network definitions
group {
color = "#7777FF";

web01;
web02;
db01;

}

network dmz {
color = "pink"

web01;
web02;

}

network internal {
web01;
web02;
db01 [shape = database];

}

network internal2 {
color = "LightBlue";

web01;
web02;
db01;

}

}

Guide de référence du langage PlantUML (1.2025.0) 304 / 580

13.8 Peer networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

@enduml

13.8 Peer networks
Peer networks are simple connections between two nodes, for which we don’t use a horizontal ”busbar”
network

@startuml
nwdiag {

inet [shape = cloud];
inet -- router;

network {
router;
web01;
web02;

}
}
@enduml

13.9 Peer networks and group
13.9.1 Without group

@startuml
nwdiag {

internet [shape = cloud];

Guide de référence du langage PlantUML (1.2025.0) 305 / 580

13.9 Peer networks and group 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

internet -- router;

network proxy {
router;
app;

}
network default {
app;

db;
}

}
@enduml

13.9.2 Group on first

@startuml
nwdiag {

internet [shape = cloud];
internet -- router;

group {
color = "pink";
app;
db;

}

network proxy {
router;
app;

}

network default {
app;

db;
}

}

Guide de référence du langage PlantUML (1.2025.0) 306 / 580

13.9 Peer networks and group 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

@enduml

13.9.3 Group on second

@startuml
nwdiag {

internet [shape = cloud];
internet -- router;

network proxy {
router;
app;

}

group {
color = "pink";
app;
db;

}

network default {
app;

db;
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 307 / 580

13.9 Peer networks and group 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

13.9.4 Group on third

@startuml
nwdiag {

internet [shape = cloud];
internet -- router;

network proxy {
router;
app;

}
network default {
app;

db;
}
group {
color = "pink";
app;
db;

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 308 / 580

13.10 Add title, caption, header, footer or legend on network diagram13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

[Ref. Issue#408 and QA-12655]

13.10 Add title, caption, header, footer or legend on network diagram
@startuml

header some header

footer some footer

title My title

nwdiag {
network inet {

web01 [shape = cloud]
}

}

legend
The legend
end legend

caption This is caption
@enduml

Guide de référence du langage PlantUML (1.2025.0) 309 / 580

13.11 With or without shadow 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

[Ref. QA-11303 and Common commands]

13.11 With or without shadow
13.11.1 With shadow (by default)

@startuml
nwdiag {

network nw {
server;
internet;

}
internet [shape = cloud];

}
@enduml

13.11.2 Without shadow

@startuml
<style>
root {
shadowing 0

}
</style>
nwdiag {

network nw {
server;
internet;

}
internet [shape = cloud];

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 310 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

[Ref. QA-14516]

13.12 Change width of the networks
You can change the width of the networks, especially in order to have the same full width for only some
or all networks.

Here are some examples, with all the possibilities.

13.12.1 First example

• without

@startuml
nwdiag {

network NETWORK_BASE {
dev_A [address = "dev_A"]
dev_B [address = "dev_B"]
}
network IntNET1 {
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
}
network IntNET2 {
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]

}
}
@enduml

• only the first

@startuml
nwdiag {

network NETWORK_BASE {
width = full

Guide de référence du langage PlantUML (1.2025.0) 311 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

dev_A [address = "dev_A"]
dev_B [address = "dev_B"]
}
network IntNET1 {
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
}
network IntNET2 {
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]

}
}
@enduml

• the first and the second

@startuml
nwdiag {

network NETWORK_BASE {
width = full
dev_A [address = "dev_A"]
dev_B [address = "dev_B"]
}
network IntNET1 {
width = full
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
}
network IntNET2 {
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 312 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

• all the network (with same full width)

@startuml
nwdiag {

network NETWORK_BASE {
width = full
dev_A [address = "dev_A"]
dev_B [address = "dev_B"]
}
network IntNET1 {
width = full
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
}
network IntNET2 {
width = full
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]

}
}
@enduml

13.12.2 Second example

• without

Guide de référence du langage PlantUML (1.2025.0) 313 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

@startuml
nwdiag {

e1
network n1 {
e1
e2
e3

}

network n2 {
e3
e4
e5

}

network n3 {
e2
e6

}
}
@enduml

• only the first

@startuml
nwdiag {

e1
network n1 {
width = full
e1
e2
e3

}

network n2 {
e3
e4

Guide de référence du langage PlantUML (1.2025.0) 314 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

e5
}

network n3 {
e2
e6

}
}
@enduml

• the first and the second

@startuml
nwdiag {

e1
network n1 {
width = full
e1
e2
e3

}

network n2 {
width = full
e3
e4
e5

}

network n3 {
e2
e6

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 315 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

• all the network (with same full width)

@startuml
nwdiag {

e1
network n1 {
width = full
e1
e2
e3

}

network n2 {
width = full
e3
e4
e5

}

network n3 {
width = full
e2
e6

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 316 / 580

13.13 Other internal networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

13.13 Other internal networks
You can define other internal networks (TCP/IP, USB, SERIAL,...).

• Without address or type

@startuml
nwdiag {

network LAN1 {
a [address = "a1"];

}
network LAN2 {

a [address = "a2"];
switch;

}
switch -- equip;
equip -- printer;

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 317 / 580

13.13 Other internal networks 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

• With address or type

@startuml
nwdiag {

network LAN1 {
a [address = "a1"];

}
network LAN2 {

a [address = "a2"];
switch [address = "s2"];

}
switch -- equip;
equip [address = "e3"];
equip -- printer;
printer [address = "USB"];

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 318 / 580

13.14 Using (global) style 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

[Ref. QA-12824]

13.14 Using (global) style
13.14.1 Without style (by default)

@startuml
nwdiag {

network DMZ {
address = "y.x.x.x/24"
web01 [address = "y.x.x.1"];
web02 [address = "y.x.x.2"];

}

network Internal {
web01;
web02;
db01 [address = "w.w.w.z", shape = database];

}

group {
description = "long group label";
web01;
web02;
db01;

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 319 / 580

13.14 Using (global) style 13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

13.14.2 With style

You can use style to change rendering of elements.

@startuml
<style>
nwdiagDiagram {

network {
BackGroundColor green
LineColor red
LineThickness 1.0
FontSize 18
FontColor navy

}
server {
BackGroundColor pink
LineColor yellow
LineThickness 1.0
' FontXXX only for description or label
FontSize 18
FontColor #blue

}
arrow {
' FontXXX only for address
FontSize 17
FontColor #red
FontName Monospaced
LineColor black

}
group {
BackGroundColor cadetblue
LineColor black
LineThickness 2.0
FontSize 11
FontStyle bold
Margin 5
Padding 5

}
}
</style>
nwdiag {

Guide de référence du langage PlantUML (1.2025.0) 320 / 580

13.15 Appendix: Test of all shapes on Network diagram (nwdiag)13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

network DMZ {
address = "y.x.x.x/24"
web01 [address = "y.x.x.1"];
web02 [address = "y.x.x.2"];

}

network Internal {
web01;
web02;
db01 [address = "w.w.w.z", shape = database];

}

group {
description = "long group label";
web01;
web02;
db01;

}
}
@enduml

[Ref. QA-14479]

13.15 Appendix: Test of all shapes on Network diagram (nwdiag)
@startuml
nwdiag {

network Network {
Actor [shape = actor]
Agent [shape = agent]
Artifact [shape = artifact]
Boundary [shape = boundary]
Card [shape = card]
Cloud [shape = cloud]
Collections [shape = collections]
Component [shape = component]

}
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 321 / 580

13.15 Appendix: Test of all shapes on Network diagram (nwdiag)13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

@startuml
nwdiag {

network Network {
Control [shape = control]
Database [shape = database]
Entity [shape = entity]
File [shape = file]
Folder [shape = folder]
Frame [shape = frame]
Hexagon [shape = hexagon]
Interface [shape = interface]

}
}
@enduml

@startuml
nwdiag {

network Network {
Label [shape = label]
Node [shape = node]
Package [shape = package]
Person [shape = person]
Queue [shape = queue]
Stack [shape = stack]
Rectangle [shape = rectangle]
Storage [shape = storage]
Usecase [shape = usecase]

}
}
@enduml

TODO: FIXME �ol�� �olli�level�0��Overlap of label for folder�olli�� �olli�level�0��Hexagon shape is miss-
ing�olli�� �ol��

Guide de référence du langage PlantUML (1.2025.0) 322 / 580

13.15 Appendix: Test of all shapes on Network diagram (nwdiag)13 DIAGRAMME DE RÉSEAU AVEC NWDIAG

@startuml
nwdiag {
network Network {
Folder [shape = folder]
Hexagon [shape = hexagon]
}
}
@enduml

@startuml
nwdiag {
network Network {
Folder [shape = folder, description = "Test, long long label\nTest, long long label"]
Hexagon [shape = hexagon, description = "Test, long long label\nTest, long long label"]
}
}
@enduml

TODO: FIXME

Guide de référence du langage PlantUML (1.2025.0) 323 / 580

14 SALT (WIREFRAME)

14 Salt (Wireframe)
Salt est un sous-projet de PlantUML qui peut vous aider à concevoir une interface graphique ou une
page web Wireframe d’un site web ou schéma d’une page ou plan d’un écran.

Il est très utile pour concevoir des interfaces graphiques, des schémas et des plans. Il permet d’aligner
les structures conceptuelles sur la conception visuelle, en mettant l’accent sur la fonctionnalité
plutôt que sur l’esthétique. Les wireframes, qui sont au cœur de ce processus, sont utilisés dans
diverses disciplines.

Les développeurs, les concepteurs et les professionnels de l’expérience utilisateur les utilisent pour visu-
aliser les éléments d’interface et les systèmes de navigation, et pour faciliter la collaboration. Ils
varient en fidélité, des croquis peu détaillés aux représentations très détaillées, cruciales pour le proto-
typage et la conception itérative. Ce processus collaboratif intègre différentes expertises, de l’analyse
commerciale à la recherche sur les utilisateurs, garantissant que la conception finale s’aligne à la
fois sur les exigences de l’entreprise et de l’utilisateur.

14.1 Composants de base
Une fenêtre doit commencer et finir par une accolade.

Vous pouvez ensuite définir :

• un bouton en utilisant [et],

• un bouton radio en utilisant (et),

• une case à cocher en utilisant [et],

• une zone de texte utilisateur en utilisant ",

• une liste déroulante en utilisant ^.

@startsalt
{

Just plain text
[This is my button]
() Unchecked radio
(X) Checked radio
[] Unchecked box
[X] Checked box
"Enter text here "
^This is a droplist^

}
@endsalt

14.2 Text area
Here is an attempt to create a text area:

@startsalt
{+

This is a long
text in a textarea
.

Guide de référence du langage PlantUML (1.2025.0) 324 / 580

14.3 Ouvrir, fermer une liste déroulante 14 SALT (WIREFRAME)

" "
}
@endsalt

Note:

• the dot (.) to fill up vertical space;

• the last line of space (" ") to make the area wider.

[Ref. QA-14765]

Then you can add scroll bar:

@startsalt
{SI

This is a long
text in a textarea
.
" "

}
@endsalt

@startsalt
{S-

This is a long
text in a textarea
.
" "

}
@endsalt

14.3 Ouvrir, fermer une liste déroulante
Vous pouvez ouvrir une liste déroulante, en ajoutant des valeurs entourées de ^, comme :

@startsalt
{

^This is a closed droplist^ |
^This is an open droplist^^ item 1^^ item 2^ |
^This is another open droplist^ item 1^ item 2^

}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 325 / 580

14.4 Utilisation de la grille [| et #, !, -, +] 14 SALT (WIREFRAME)

[Réf. QA-4184]

14.4 Utilisation de la grille [| et #, !, -, +]
Un tableau est automatiquement créé lorsque vous utilisez une parenthèse ouvrante {. Et vous devez
utiliser | pour séparer les colonnes.

Par exemple

@startsalt
{

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

Juste après le crochet ouvrant, vous pouvez utiliser un caractère pour définir si vous voulez dessiner des
lignes ou des colonnes de la grille

Symbole Résultat
Pour afficher toutes les lignes verticales et horizontales
! Pour afficher toutes les lignes verticales
- Pour afficher toutes les lignes horizontales
+ Pour afficher les lignes externes

@startsalt
{+

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

14.5 Regroupement de champs
Plus d’information ici

@startsalt
{^"My group box"

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 326 / 580

14.6 Utilisation des séparateurs 14 SALT (WIREFRAME)

14.6 Utilisation des séparateurs
Vous pouvez utiliser de nombreuses lignes horizontales en tant que séparateur.

@startsalt
{

Text1
..
"Some field"
==
Note on usage
~~
Another text
--
[Ok]

}
@endsalt

14.7 Arbre (structure arborescente) [T]
Pour faire un arbre ou une structure arborescente, vous devez commencer avec {T et utiliser + pour
signaler la hiérarchie.

@startsalt
{
{T
+ World
++ America
+++ Canada
+++ USA
++++ New York
++++ Boston
+++ Mexico
++ Europe
+++ Italy
+++ Germany
++++ Berlin
++ Africa

}
}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 327 / 580

14.8 Arbre et Tableau [T] 14 SALT (WIREFRAME)

14.8 Arbre et Tableau [T]
Vous pouvez combiner des arbres avec des tableaux.

@startsalt
{
{T
+Region | Population | Age
+ World | 7.13 billion | 30
++ America | 964 million | 30
+++ Canada | 35 million | 30
+++ USA | 319 million | 30
++++ NYC | 8 million | 30
++++ Boston | 617 thousand | 30
+++ Mexico | 117 million | 30
++ Europe | 601 million | 30
+++ Italy | 61 million | 30
+++ Germany | 82 million | 30
++++ Berlin | 3 million | 30
++ Africa | 1 billion | 30
}
}
@endsalt

Et ajouter des lignes

@startsalt
{
..
== with T!
{T!
+Region | Population | Age
+ World | 7.13 billion | 30
++ America | 964 million | 30
}
..
== with T-
{T-
+Region | Population | Age
+ World | 7.13 billion | 30
++ America | 964 million | 30
}
..
== with T+
{T+
+Region | Population | Age
+ World | 7.13 billion | 30
++ America | 964 million | 30
}

Guide de référence du langage PlantUML (1.2025.0) 328 / 580

14.9 Accolades délimitantes [{, }] 14 SALT (WIREFRAME)

..
== with T#
{T#
+Region | Population | Age
+ World | 7.13 billion | 30
++ America | 964 million | 30
}
..
}
@endsalt

[Réf. QA-1265]

14.9 Accolades délimitantes [{, }]
Vous pouvez définir des sous-éléments en créant une accolade ouvrante.

@startsalt
{
Name | " "
Modifiers: | { (X) public | () default | () private | () protected

[] abstract | [] final | [] static }
Superclass: | { "java.lang.Object " | [Browse...] }
}
@endsalt

14.10 Ajout d’onglet [/]
Vous pouvez ajouter des onglets avec la notation {/. Notez que vous pouvez utiliser du code HTML pour
avoir un texte en gras.

@startsalt
{+
{/ General | Fullscreen | Behavior | Saving }
{
{ Open image in: | ^Smart Mode^ }
[X] Smooth images when zoomed
[X] Confirm image deletion
[] Show hidden images

Guide de référence du langage PlantUML (1.2025.0) 329 / 580

14.11 Utilisation de menu [*] 14 SALT (WIREFRAME)

}
[Close]
}
@endsalt

Les onglets peuvent également être orientés verticalement:

@startsalt
{+
{/ General
Fullscreen
Behavior
Saving } |
{
{ Open image in: | ^Smart Mode^ }
[X] Smooth images when zoomed
[X] Confirm image deletion
[] Show hidden images
[Close]
}
}
@endsalt

14.11 Utilisation de menu [*]
Vous pouvez ajouter un menu en utilisant la notation {*

@startsalt
{+
{* File | Edit | Source | Refactor }
{/ General | Fullscreen | Behavior | Saving }
{
{ Open image in: | ^Smart Mode^ }
[X] Smooth images when zoomed
[X] Confirm image deletion
[] Show hidden images
}
[Close]
}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 330 / 580

14.11 Utilisation de menu [*] 14 SALT (WIREFRAME)

Il est également possible d’ouvrir un menu

@startsalt
{+
{* File | Edit | Source | Refactor
Refactor | New | Open File | - | Close | Close All }

{/ General | Fullscreen | Behavior | Saving }
{
{ Open image in: | ^Smart Mode^ }
[X] Smooth images when zoomed
[X] Confirm image deletion
[] Show hidden images
}
[Close]
}
@endsalt

Comme il est possible d’ouvrir une liste déroulante

@startsalt
{+
{* File | Edit | Source | Refactor }
{/ General | Fullscreen | Behavior | Saving }
{
{ Open image in: | ^Smart Mode^^Normal Mode^ }
[X] Smooth images when zoomed
[X] Confirm image deletion
[] Show hidden images
}
[Close]
}
@endsalt

[Réf. QA-4184]

Guide de référence du langage PlantUML (1.2025.0) 331 / 580

14.12 Tableaux avancés 14 SALT (WIREFRAME)

14.12 Tableaux avancés
Vous pouvez utiliser deux notations spéciales pour les tableaux :

• * pour indiquer que la cellule de gauche peut s’étendre sur l’actuelle

• . pour indiquer une cellule vide

@startsalt
{#
. | Column 2 | Column 3
Row header 1 | value 1 | value 2
Row header 2 | A long cell | *
}
@endsalt

14.13 Barres de défilement [S, SI, S-]
Vous pouvez utiliser la commande {S pour afficher les barres de défilement comme dans les exemples
suivants :

• {S : barres de défilement verticale et horizontale

@startsalt
{S
Message
.
.
.
.
}
@endsalt

• {SI : barre de défilement verticale seulement

@startsalt
{SI
Message
.
.
.
.
}
@endsalt

• {S- : barre de défilement horizontale seulement

Guide de référence du langage PlantUML (1.2025.0) 332 / 580

14.14 Couleurs 14 SALT (WIREFRAME)

@startsalt
{S-
Message
.
.
.
.
}
@endsalt

14.14 Couleurs
Il est possible de modifier la couleur du texte du widget

@startsalt
{

<color:Blue>Just plain text
[This is my default button]
[<color:green>This is my green button]
[<color:#9a9a9a>This is my disabled button]
[] <color:red>Unchecked box
[X] <color:green>Checked box
"Enter text here "
^This is a droplist^
^<color:#9a9a9a>This is a disabled droplist^
^<color:red>This is a red droplist^

}
@endsalt

[Ref. QA-12177]

14.15 Creole on Salt
You can use Creole or HTML Creole on salt:

@startsalt
{{^==Creole

This is **bold**
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__

Guide de référence du langage PlantUML (1.2025.0) 333 / 580

14.15 Creole on Salt 14 SALT (WIREFRAME)

This is ~~wave-underlined~~
--test Unicode and icons--
This is <U+221E> long
This is a <&code> icon
Use image : <img:https://plantuml.com/logo3.png>

}|
{^HTML Creole
This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>
This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>
-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>Orange background</back>
This is <size:20>big</size>

}|
{^Creole line
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
Or dotted title
//and title... //
==Title==
Or double-line title
--Another title--
Or single-line title
Enjoy!
}|
{^Creole list item
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
}|
{^Mix on salt
==<color:Blue>Just plain text
[This is my default button]
[<color:green>This is my green button]
[---<color:#9a9a9a>This is my disabled button--]

Guide de référence du langage PlantUML (1.2025.0) 334 / 580

14.16 Pseudo sprite [«, »] 14 SALT (WIREFRAME)

[] <size:20><color:red>Unchecked box
[X] <color:green>Checked box
"//Enter text here// "
^This is a droplist^
^<color:#9a9a9a>This is a disabled droplist^
^<color:red>This is a red droplist^

}}
@endsalt

14.16 Pseudo sprite [«, »]
En utilisant << et >>, vous pouvez définir un dessin de type pseudo-sprite ou sprite et le réutiliser
ultérieurement

@startsalt
{
[X] checkbox|[] checkbox
() radio | (X) radio
This is a text|[This is my button]|This is another text
"A field"|"Another long Field"|[A button]
<<folder
............
.XXXXX......
.X...X......
.XXXXXXXXXX.
.X........X.
.X........X.
.X........X.
.X........X.
.XXXXXXXXXX.
............
>>|<color:blue>other folder|<<folder>>

^Droplist^
}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 335 / 580

14.17 OpenIconic 14 SALT (WIREFRAME)

[Réf. QA-5849]

14.17 OpenIconic
OpenIconic is an very nice open source icon set. Those icons have been integrated into the creole parser,
so you can use them out-of-the-box.

You can use the following syntax: <&ICON_NAME>.

@startsalt
{

Login<&person> | "MyName "
Password<&key> | "**** "
[Cancel <&circle-x>] | [OK <&account-login>]

}
@endsalt

The complete list is available on OpenIconic Website, or you can use the following special diagram:

@startuml
listopeniconic
@enduml

14.18 Ajouter un titre, un en-tête, un pied de page, une légende
@startsalt
title My title
header some header
footer some footer
caption This is caption

Guide de référence du langage PlantUML (1.2025.0) 336 / 580

14.19 Zoom, DPI 14 SALT (WIREFRAME)

legend
The legend
end legend

{+
Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}

@endsalt

(Voir aussi : Commandes communes)

14.19 Zoom, DPI
14.19.1 Sans zoom (par défaut)

@startsalt
{

<&person> Login | "MyName "
<&key> Password | "**** "
[<&circle-x> Cancel] | [<&account-login> OK]

}
@endsalt

14.19.2 Scale

Vous pouvez utiliser la commande scale pour zoomer l’image générée.

Vous pouvez utiliser un nombre ou une fraction pour définir le facteur d’échelle. Vous pouvez également
indiquer soit la largeur, soit la hauteur (en pixels). Et vous pouvez également donner à la fois la largeur
et la hauteur : l’image est mise à l’échelle pour s’adapter à la dimension spécifiée

@startsalt
scale 2
{

<&person> Login | "MyName "
<&key> Password | "**** "
[<&circle-x> Cancel] | [<&account-login> OK]

}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 337 / 580

14.20 Include Salt ”on activity diagram” 14 SALT (WIREFRAME)

(Voir aussi : [Zoom sur les commandes communes](commons#zw5yrgax40mpk362kjbn))

14.19.3 DPI

Vous pouvez également utiliser la commande skinparam dpipour zoomer l’image générée

@startsalt
skinparam dpi 200
{

<&person> Login | "MyName "
<&key> Password | "**** "
[<&circle-x> Cancel] | [<&account-login> OK]

}
@endsalt

14.20 Include Salt ”on activity diagram”
You can read the following explanation.

@startuml
(*) --> "
{{
salt
{+
an example
choose one option
()one
()two
[ok]
}
}}
" as choose

choose -right-> "
{{
salt
{+
please wait
operation in progress
<&clock>
[cancel]
}
}}
" as wait

Guide de référence du langage PlantUML (1.2025.0) 338 / 580

14.20 Include Salt ”on activity diagram” 14 SALT (WIREFRAME)

wait -right-> "
{{
salt
{+
success
congratulations!
[ok]
}
}}
" as success

wait -down-> "
{{
salt
{+
error
failed, sorry
[ok]
}
}}
"
@enduml

It can also be combined with define macro.

@startuml
!unquoted procedure SALT($x)
"{{
salt
%invoke_procedure("_"+$x)
}}" as $x
!endprocedure

!procedure _choose()
{+
an example
choose one option
()one
()two
[ok]
}
!endprocedure

Guide de référence du langage PlantUML (1.2025.0) 339 / 580

14.21 Include salt ”on while condition of activity diagram” 14 SALT (WIREFRAME)

!procedure _wait()
{+
please wait
operation in progress
<&clock>
[cancel]
}
!endprocedure

!procedure _success()
{+
success
congratulations!
[ok]
}
!endprocedure

!procedure _error()
{+
error
failed, sorry
[ok]
}
!endprocedure

(*) --> SALT(choose)
-right-> SALT(wait)
wait -right-> SALT(success)
wait -down-> SALT(error)
@enduml

14.21 Include salt ”on while condition of activity diagram”
You can include salt on while condition of activity diagram.

@startuml
start
while (\n{{\nsalt\n{+\nPassword | "**** "\n[Cancel] | [OK]}\n}}\n) is (Incorrect)

:log attempt;
:attempt_count++;
if (attempt_count > 4) then (yes)

Guide de référence du langage PlantUML (1.2025.0) 340 / 580

14.22 Include salt ”on repeat while condition of activity diagram” 14 SALT (WIREFRAME)

:increase delay timer;
:wait for timer to expire;

else (no)
endif

endwhile (correct)
:log request;
:disable service;
@enduml

[Ref. QA-8547]

14.22 Include salt ”on repeat while condition of activity diagram”
You can include salt on ’repeat while’ condition of activity diagram.

@startuml
start
repeat :read data;

:generate diagrams;
repeat while (\n{{\nsalt\n{^"Next step"\n Do you want to continue? \n[Yes]|[No]\n}\n}}\n)
stop
@enduml

Guide de référence du langage PlantUML (1.2025.0) 341 / 580

14.23 Skinparam 14 SALT (WIREFRAME)

[Ref. QA-14287]

14.23 Skinparam
You can use [only] some skinparam command to change the skin of the drawing.

Some example:

@startsalt
skinparam Backgroundcolor palegreen
{+

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

@startsalt
skinparam handwritten true
{+

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

TODO: FIXME � FYI, some other skinparam does not work with salt, as:

@startsalt
skinparam defaultFontName monospaced
{+

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 342 / 580

14.24 Style 14 SALT (WIREFRAME)

14.24 Style
You can use [only] some style command to change the skin of the drawing.

Some example:

@startsalt
<style>
saltDiagram {

BackgroundColor palegreen
}
</style>
{+

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

TODO: FIXME � FYI, some other style does not work with salt, as:

@startsalt
<style>
saltDiagram {

Fontname Monospaced
FontSize 10
FontStyle italic
LineThickness 0.5
LineColor red

}
</style>
{+

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

[Ref. QA-13460]

Guide de référence du langage PlantUML (1.2025.0) 343 / 580

15 ARCHIMATE

15 ArchiMate
ArchiMate est un langage de modélisation d’architecture d’entreprise ouvert et indépendant qui
prend en charge la description, l’analyse et la visualisation de l’architecture à l’intérieur et à l’extérieur
des domaines d’activité. Un diagramme ArchiMate fournit une représentation structurée des dif-
férents composants d’une entreprise, de leurs relations et de leur intégration avec l’infrastructure
informatique.

ArchiMate et UML sont tous deux des langages de modélisation, mais ils ont des objectifs différents.
UML est principalement utilisé pour la conception de logiciels et la modélisation de systèmes, en se
concentrant sur les aspects structurels et comportementaux des systèmes. En revanche, ArchiMate est
conçu pour l’architecture d’entreprise, offrant une vision holistique des couches organisationnelles,
informationnelles et techniques d’une entreprise.

15.1 Mot-clé Archimate
Vous pouvez utiliser le mot-clé archimate pour définir un élément. De façon optionnelle, un stéréotype
peut indiquer une icône à afficher. Certains noms de couleurs (Business, Application, Motivation,
Strategy, Technology, Physical, Implementation) sont aussi disponibles.

@startuml
archimate #Technology "Serveur VPN" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange
@enduml

15.2 Jonctions Archimate
A l’aide du mot-clé circle et du préprocesseur, vous pouvez déclarer des jonctions.

@startuml
!define Junction_Or circle #black
!define Junction_And circle #whitesmoke

Junction_And JunctionAnd
Junction_Or JunctionOr

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange
GO -up-> JunctionOr
STOP -up-> JunctionOr
STOP -down-> JunctionAnd
WAIT -down-> JunctionAnd
@enduml

Guide de référence du langage PlantUML (1.2025.0) 344 / 580

15.3 Exemple 1 15 ARCHIMATE

15.3 Exemple 1
@startuml
skinparam rectangle<<behavior>> {
roundCorner 25
}
sprite $bProcess jar:archimate/business-process
sprite $aService jar:archimate/application-service
sprite $aComponent jar:archimate/application-component

rectangle "Handle claim" as HC <<$bProcess>><<behavior>> #Business
rectangle "Capture Information" as CI <<$bProcess>><<behavior>> #Business
rectangle "Notify\nAdditional Stakeholders" as NAS <<$bProcess>><<behavior>> #Business
rectangle "Validate" as V <<$bProcess>><<behavior>> #Business
rectangle "Investigate" as I <<$bProcess>><<behavior>> #Business
rectangle "Pay" as P <<$bProcess>><<behavior>> #Business

HC *-down- CI
HC *-down- NAS
HC *-down- V
HC *-down- I
HC *-down- P

CI -right->> NAS
NAS -right->> V
V -right->> I
I -right->> P

rectangle "Scanning" as scanning <<$aService>><<behavior>> #Application
rectangle "Customer admnistration" as customerAdministration <<$aService>><<behavior>> #Application
rectangle "Claims admnistration" as claimsAdministration <<$aService>><<behavior>> #Application
rectangle Printing <<$aService>><<behavior>> #Application
rectangle Payment <<$aService>><<behavior>> #Application

scanning -up-> CI
customerAdministration -up-> CI
claimsAdministration -up-> NAS
claimsAdministration -up-> V
claimsAdministration -up-> I
Payment -up-> P

Printing -up-> V
Printing -up-> P

Guide de référence du langage PlantUML (1.2025.0) 345 / 580

15.4 Exemple 2 15 ARCHIMATE

rectangle "Document\nManagement\nSystem" as DMS <<$aComponent>> #Application
rectangle "General\nCRM\nSystem" as CRM <<$aComponent>> #Application
rectangle "Home & Away\nPolicy\nAdministration" as HAPA <<$aComponent>> #Application
rectangle "Home & Away\nFinancial\nAdministration" as HFPA <<$aComponent>> #Application

DMS .up.|> scanning
DMS .up.|> Printing
CRM .up.|> customerAdministration
HAPA .up.|> claimsAdministration
HFPA .up.|> Payment

legend left
Example from the "Archisurance case study" (OpenGroup).
See
====
<$bProcess> :business process
====
<$aService> : application service
====
<$aComponent> : application component
endlegend
@enduml

15.4 Exemple 2
@startuml

Guide de référence du langage PlantUML (1.2025.0) 346 / 580

15.5 Liste des sprites possibles 15 ARCHIMATE

skinparam roundcorner 25
rectangle "Capture Information" as CI <<$archimate/business-process>> #Business
@enduml

15.5 Liste des sprites possibles
Vous pouvez afficher tous les sprites disponibles pour Archimate à l’aide du diagramme suivant:

@startuml
listsprite
@enduml

15.6 ArchiMate Macros
15.6.1 Archimate Macros and Library

A list of Archimate macros are defined Archimate-PlantUML here which simplifies the creation of Archi-
Mate diagrams, and Archimate is natively on the Standard Library of PlantUML.

15.6.2 Archimate elements

Using the macros, creation of ArchiMate elements are done using the following format: Category_ElementName(nameOfTheElement,
"description")

For example:

• To define a Stakeholder element, which is part of Motivation category, the syntax will be Motivation_Stakeholder(StakeholderElement,
"Stakeholder Description"):

@startuml
!include <archimate/Archimate>

Guide de référence du langage PlantUML (1.2025.0) 347 / 580

15.6 ArchiMate Macros 15 ARCHIMATE

Motivation_Stakeholder(StakeholderElement, "Stakeholder Description")
@enduml

• To define a Business Service element, Business_Service(BService, "Business Service"):

@startuml
!include <archimate/Archimate>
Business_Service(BService, "Business Service")
@enduml

15.6.3 Archimate relationships

The ArchiMate relationships are defined with the following pattern: Rel_RelationType(fromElement,
toElement, "description") and to define the direction/orientation of the two elements: Rel_RelationType_Direction(fromElement,
toElement, "description")

The RelationTypes supported are:

• Access

• Aggregation

• Assignment

• Association

• Composition

• Flow

• Influence

• Realization

• Serving

• Specialization

• Triggering

The Directions supported are:

• Up

• Down

• Left

• Right

For example:

• To denote a composition relationship between the Stakeholder and Business Service defined above,
the syntax will be

Rel_Composition(StakeholderElement, BService, "Description for the relationship")

@startuml
!include <archimate/Archimate>
Motivation_Stakeholder(StakeholderElement, "Stakeholder Description")
Business_Service(BService, "Business Service")
Rel_Composition(StakeholderElement, BService, "Description for the relationship")

Guide de référence du langage PlantUML (1.2025.0) 348 / 580

15.6 ArchiMate Macros 15 ARCHIMATE

@enduml

• Unordered List ItemTo orient the two elements in top - down position, the syntax will be

Rel_Composition_Down(StakeholderElement, BService, "Description for the relationship")

@startuml
!include <archimate/Archimate>
Motivation_Stakeholder(StakeholderElement, "Stakeholder Description")
Business_Service(BService, "Business Service")
Rel_Composition_Down(StakeholderElement, BService, "Description for the relationship")
@enduml

15.6.4 Appendice: Examples of all Archimate RelationTypes

@startuml
left to right direction
skinparam nodesep 4
!include <archimate/Archimate>
Rel_Triggering(i15, j15, Triggering)
Rel_Specialization(i14, j14, Specialization)
Rel_Serving(i13, j13, Serving)
Rel_Realization(i12, j12, Realization)
Rel_Influence(i11, j11, Influence)
Rel_Flow(i10, j10, Flow)
Rel_Composition(i9, j9, Composition)
Rel_Association_dir(i8, j8, Association_dir)
Rel_Association(i7, j7, Association)
Rel_Assignment(i6, j6, Assignment)
Rel_Aggregation(i5, j5, Aggregation)
Rel_Access_w(i4, j4, Access_w)
Rel_Access_rw(i3, j3, Access_rw)
Rel_Access_r(i2, j2, Access_r)
Rel_Access(i1, j1, Access)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 349 / 580

15.6 ArchiMate Macros 15 ARCHIMATE

@startuml
title ArchiMate Relationships Overview
skinparam nodesep 5
<style>
interface {

shadowing 0
backgroundcolor transparent
linecolor transparent
FontColor transparent

Guide de référence du langage PlantUML (1.2025.0) 350 / 580

15.6 ArchiMate Macros 15 ARCHIMATE

}
</style>
!include <archimate/Archimate>
left to right direction

rectangle Other {
() i14
() j14
}

rectangle Dynamic {
() i10
() j10
() i15
() j15
}

rectangle Dependency {
() i13
() j13
() i4
() j4
() i11
() j11
() i7
() j7
}

rectangle Structural {
() i9
() j9
() i5
() j5
() i6
() j6
() i12
() j12
}

Rel_Triggering(i15, j15, Triggering)
Rel_Specialization(i14, j14, Specialization)
Rel_Serving(i13, j13, Serving)
Rel_Realization(i12, j12, Realization)
Rel_Influence(i11, j11, Influence)
Rel_Flow(i10, j10, Flow)
Rel_Composition(i9, j9, Composition)
Rel_Association_dir(i7, j7, \nAssociation_dir)
Rel_Association(i7, j7, Association)
Rel_Assignment(i6, j6, Assignment)
Rel_Aggregation(i5, j5, Aggregation)
Rel_Access_w(i4, j4, Access_w)
Rel_Access_rw(i4, j4, Access_rw)
Rel_Access_r(i4, j4, Access_r)
Rel_Access(i4, j4, Access)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 351 / 580

15.6 ArchiMate Macros 15 ARCHIMATE

[Adapted from Archimate PR#25]

Guide de référence du langage PlantUML (1.2025.0) 352 / 580

16 DIAGRAMME DE GANTT

16 Diagramme de Gantt
Le diagramme de Gantt est un outil puissant utilisé pour la gestion de projets. Il représente visuelle-
ment le calendrier d’un projet, permettant aux responsables et aux membres de l’équipe de voir d’un
seul coup d’œil les dates de début et de fin de l’ensemble du projet. Le diagramme affiche les tâches ou
les activités le long d’un axe temporel horizontal, montrant la durée de chaque tâche, leur séquence et
la façon dont elles se chevauchent ou se déroulent simultanément.

Dans un diagramme de Gantt, chaque tâche est représentée par une barre, dont la longueur et la position
reflètent la date de début, la durée et la date de fin de la tâche. Ce format permet de comprendre
facilement les dépendances entre les tâches, lorsqu’une tâche doit être achevée avant qu’une autre
ne puisse commencer. En outre, les diagrammes de Gantt peuvent inclure des jalons, qui sont des
événements ou des objectifs importants dans la chronologie du projet, marqués par un symbole distinct.

Dans le contexte de la création de diagrammes de Gantt, PlantUML offre plusieurs avantages. Il offre
une approche textuelle de la création de diagrammes, ce qui facilite le suivi des modifications à l’aide
de systèmes de contrôle des versions. Cette approche est particulièrement bénéfique pour les équipes
qui sont déjà habituées à des environnements de codage basés sur le texte. La syntaxe de PlantUML
pour les diagrammes de Gantt est simple, ce qui permet des modifications et des mises à jour rapides de
la chronologie du projet. De plus, l’intégration de PlantUML avec d’autres outils et sa capacité à
générer des diagrammes dynamiquement à partir de texte en font un choix polyvalent pour les équipes
qui cherchent à automatiser et à rationaliser leur documentation de gestion de projet. L’utilisation de
PlantUML pour les diagrammes de Gantt combine donc la clarté et l’efficacité de la planification
visuelle de projet avec la flexibilité et le contrôle d’un système basé sur le texte.

16.1 Déclaration des tâches
Le Gantt est décrit en langage naturel, à l’aide de phrases très simples (sujet-verbe-complément).

Tâches définies à l’aide de crochets.

16.1.1 Charge de travail

La charge de travail pour chaque tâche est spécifiée à l’aide du verbe requires, indiquant la quantité de
travail nécessaire en termes de jours.

@startgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days
-- All example --
[Task 1 (1 day)] requires 1 day
[T2 (5 days)] requires 5 days
[T3 (1 week)] requires 1 week
[T4 (1 week and 4 days)] requires 1 week and 4 days
[T5 (2 weeks)] requires 2 weeks
@endgantt

Une semaine est généralement comprise comme une période de sept jours. Toutefois, dans les contextes
où certains jours sont désignés comme ”fermés” (comme les week-ends), une semaine peut être redéfinie
en termes de jours ”non fermés”. Par exemple, si le samedi et le dimanche sont désignés comme fermés,

Guide de référence du langage PlantUML (1.2025.0) 353 / 580

16.1 Déclaration des tâches 16 DIAGRAMME DE GANTT

une semaine dans ce contexte équivaudra à une charge de travail de cinq jours, correspondant aux jours
de semaine restants.

16.1.2 Start

Leur début est défini à l’aide du verbe start:

@startgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days

Project starts 2020-07-01
[Prototype design] starts 2020-07-01
[Test prototype] starts 2020-07-16
@endgantt

@startgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days

[Prototype design] starts D+0
[Test prototype] starts D+15
@endgantt

[Réf. pour la forme D+nn: QA-14494]

16.1.3 Fin

Leur fin est définie à l’aide du verbe end:

@startgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days

Project starts 2020-07-01
[Prototype design] ends 2020-07-15
[Test prototype] ends 2020-07-25
@endgantt

@startgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days

[Prototype design] ends D+14

Guide de référence du langage PlantUML (1.2025.0) 354 / 580

16.2 Déclaration sur une ligne (avec la conjonction et) 16 DIAGRAMME DE GANTT

[Test prototype] ends D+24
@endgantt

16.1.4 Début/Fin

Il est possible de définir les deux de manière absolue, en spécifiant des dates :

@startgantt
Project starts 2020-07-01
[Prototype design] starts 2020-07-01
[Test prototype] starts 2020-07-16
[Prototype design] ends 2020-07-15
[Test prototype] ends 2020-07-25

@endgantt

@startgantt
[Prototype design] starts D+0
[Test prototype] starts D+15
[Prototype design] ends D+14
[Test prototype] ends D+24
@endgantt

16.2 Déclaration sur une ligne (avec la conjonction et)
Il est possible de combiner une déclaration sur une ligne avec la conjonction and

@startgantt
Project starts 2020-07-01
[Prototype design] starts 2020-07-01 and ends 2020-07-15
[Test prototype] starts 2020-07-16 and requires 10 days
@endgantt

16.3 Ajout de contraintes
Il est possible d’ajouter des contraintes entre les tâches

@startgantt
[Prototype design] requires 15 days

Guide de référence du langage PlantUML (1.2025.0) 355 / 580

16.4 Noms courts 16 DIAGRAMME DE GANTT

[Test prototype] requires 10 days
[Test prototype] starts at [Prototype design]'s end
@endgantt

@startgantt
[Prototype design] requires 10 days
[Code prototype] requires 10 days
[Write tests] requires 5 days
[Code prototype] starts at [Prototype design]'s end
[Write tests] starts at [Code prototype]'s start
@endgantt

16.4 Noms courts
Il est possible de définir des noms courts pour les tâches à l’aide du mot-clé as.

@startgantt
[Prototype design] as [D] requires 15 days
[Test prototype] as [T] requires 10 days
[T] starts at [D]'s end
@endgantt

16.5 Tasks with same name
[Starting with V1.2024.6,] it is possible to have multiple tasks with same name.

@startgantt
Project starts 2020-11-08
[Task 7 days] as [T7] starts at 2020-11-09
[T7] ends at 2020-11-15
[Task 7 days] as [T7bis] starts at 2020-11-09
[T7bis] ends at 2020-11-15
@endgantt

@startgantt
[SameTaskName] as [T1] lasts 7 days and is colored in pink
[SameTaskName] as [T2] lasts 3 days and is colored in orange
[T1] -> [T2]
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 356 / 580

16.6 Personnaliser les couleurs 16 DIAGRAMME DE GANTT

[Ref. QA-12176 and GH-1809]

16.6 Personnaliser les couleurs
Il est également possible de personnaliser les couleurs avec is colored in.

@startgantt
[Prototype design] requires 13 days
[Test prototype] requires 4 days
[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Fuchsia/FireBrick
[Test prototype] is colored in GreenYellow/Green
@endgantt

16.7 État d’achèvement
16.7.1 Ajout du pourcentage d’achèvement selon

Vous pouvez définir l’état d’achèvement d’une tâche, par la commande :

• is xx% completed

• is xx% complete

@startgantt
[foo] requires 21 days
[foo] is 40% completed
[bar] requires 30 days and is 10% complete
@endgantt

16.7.2 Changer la couleur de l’achèvement (par style)

@startgantt

<style>
ganttDiagram {

task {
BackGroundColor GreenYellow
LineColor Green
unstarted {
BackGroundColor Fuchsia
LineColor FireBrick

}
}

}
</style>

[Prototype design] requires 7 days
[Test prototype 0] requires 4 days

Guide de référence du langage PlantUML (1.2025.0) 357 / 580

16.8 Jalon 16 DIAGRAMME DE GANTT

[Test prototype 10] requires 4 days
[Test prototype 20] requires 4 days
[Test prototype 30] requires 4 days
[Test prototype 40] requires 4 days
[Test prototype 50] requires 4 days
[Test prototype 60] requires 4 days
[Test prototype 70] requires 4 days
[Test prototype 80] requires 4 days
[Test prototype 90] requires 4 days
[Test prototype 100] requires 4 days

[Test prototype 0] starts at [Prototype design]'s end
[Test prototype 10] starts at [Prototype design]'s end
[Test prototype 20] starts at [Prototype design]'s end
[Test prototype 30] starts at [Prototype design]'s end
[Test prototype 40] starts at [Prototype design]'s end
[Test prototype 50] starts at [Prototype design]'s end
[Test prototype 60] starts at [Prototype design]'s end
[Test prototype 70] starts at [Prototype design]'s end
[Test prototype 80] starts at [Prototype design]'s end
[Test prototype 90] starts at [Prototype design]'s end
[Test prototype 100] starts at [Prototype design]'s end

[Test prototype 0] is 0% complete
[Test prototype 10] is 10% complete
[Test prototype 20] is 20% complete
[Test prototype 30] is 30% complete
[Test prototype 40] is 40% complete
[Test prototype 50] is 50% complete
[Test prototype 60] is 60% complete
[Test prototype 70] is 70% complete
[Test prototype 80] is 80% complete
[Test prototype 90] is 90% complete
[Test prototype 100] is 100% complete

@endgantt

[Ref. QA-8297]

[Ref. QA-15299]

16.8 Jalon
Vous pouvez définir des jalons à l’aide du verbe happen.

Guide de référence du langage PlantUML (1.2025.0) 358 / 580

16.9 Hyperliens 16 DIAGRAMME DE GANTT

16.8.1 Jalon relatif (utilisation de contraintes)

@startgantt
[Test prototype] requires 10 days
[Prototype completed] happens at [Test prototype]'s end
[Setup assembly line] requires 12 days
[Setup assembly line] starts at [Test prototype]'s end
@endgantt

16.8.2 Jalon absolu (utilisation d’une date fixe)

@startgantt
Project starts 2020-07-01
[Test prototype] requires 10 days
[Prototype completed] happens 2020-07-10
[Setup assembly line] requires 12 days
[Setup assembly line] starts at [Test prototype]'s end
@endgantt

16.8.3 Jalon de fin de tâches maximum

@startgantt
[Task1] requires 4 days
then [Task1.1] requires 4 days
[Task1.2] starts at [Task1]'s end and requires 7 days

[Task2] requires 5 days
then [Task2.1] requires 4 days

[MaxTaskEnd] happens at [Task1.1]'s end
[MaxTaskEnd] happens at [Task1.2]'s end
[MaxTaskEnd] happens at [Task2.1]'s end

@endgantt

[Réf. QA-10764]

16.9 Hyperliens
Vous pouvez ajouter des hyperliens aux tâches.

Guide de référence du langage PlantUML (1.2025.0) 359 / 580

16.10 Calendrier 16 DIAGRAMME DE GANTT

@startgantt
[task1] requires 10 days
[task1] links to [[http://plantuml.com]]
@endgantt

16.10 Calendrier
Vous pouvez spécifier une date de début pour l’ensemble du projet. Par défaut, la première tâche
commence à cette date

@startgantt
Project starts the 20th of september 2017
[Prototype design] as [TASK1] requires 13 days
[TASK1] is colored in Lavender/LightBlue
@endgantt

16.11 Journées en couleur
Il est possible d’ajouter des couleurs à certaines journées

@startgantt
Project starts the 2020/09/01

2020/09/07 is colored in salmon
2020/09/13 to 2020/09/16 are colored in lightblue

[Prototype design] as [TASK1] requires 22 days
[TASK1] is colored in Lavender/LightBlue
[Prototype completed] happens at [TASK1]'s end
@endgantt

16.12 Changement d’échelle
Vous pouvez changer d’échelle pour les projets de très longue durée, avec l’un des paramètres suivants :

• printscale

• ganttscale

• projectcale

et l’une des valeurs suivantes :

• daily (par défaut)

• weekly

• monthly

Guide de référence du langage PlantUML (1.2025.0) 360 / 580

16.12 Changement d’échelle 16 DIAGRAMME DE GANTT

• quarterly

• yearly

(Voir QA-11272, QA-9041 et QA-10948)

16.12.1 Daily (par défaut)

@startgantt
saturday are closed
sunday are closed

Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.12.2 Hebdomadaire

@startgantt
printscale weekly
saturday are closed
sunday are closed

Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

@startgantt
printscale weekly
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

Guide de référence du langage PlantUML (1.2025.0) 361 / 580

16.12 Changement d’échelle 16 DIAGRAMME DE GANTT

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.12.3 Mensuel

@startgantt
projectscale monthly
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.12.4 Trimestriel

@startgantt
projectscale quarterly
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

@startgantt
projectscale quarterly
Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days
[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 362 / 580

16.13 Zoom (exemple pour toute l’échelle) 16 DIAGRAMME DE GANTT

16.12.5 Annuel

@startgantt
projectscale yearly
Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days
[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
@endgantt

16.13 Zoom (exemple pour toute l’échelle)
Vous pouvez modifier le zoom, avec le paramètre

• zoom <integer>

16.13.1 Zoom sur l’échelle hebdomadaire

16.13.2 Sans zoom

@startgantt
printscale daily
saturday are closed
sunday are closed

Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 8 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 3 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.13.3 Avec zoom

@startgantt
printscale daily zoom 2
saturday are closed

Guide de référence du langage PlantUML (1.2025.0) 363 / 580

16.13 Zoom (exemple pour toute l’échelle) 16 DIAGRAMME DE GANTT

sunday are closed

Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 8 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 3 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

[Ref. QA-13725]

16.13.4 Zoom sur l’échelle hebdomadaire

16.13.5 Sans zoom

@startgantt
printscale weekly
saturday are closed
sunday are closed

Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.13.6 Avec zoom

@startgantt
printscale weekly zoom 4
saturday are closed
sunday are closed

Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]

Guide de référence du langage PlantUML (1.2025.0) 364 / 580

16.13 Zoom (exemple pour toute l’échelle) 16 DIAGRAMME DE GANTT

2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.13.7 Zoom sur l’échelle mensuelle

16.13.8 Sans zoom

@startgantt
projectscale monthly
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.13.9 Avec zoom

@startgantt
projectscale monthly zoom 3
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.13.10 Zoom sur l’échelle trimestrielle

16.13.11 Sans zoom

@startgantt
projectscale quarterly
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue

Guide de référence du langage PlantUML (1.2025.0) 365 / 580

16.13 Zoom (exemple pour toute l’échelle) 16 DIAGRAMME DE GANTT

[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.13.12 Avec zoom

@startgantt
projectscale quarterly zoom 7
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.13.13 Zoom sur l’échelle annuelle

16.13.14 Sans zoom

@startgantt
projectscale yearly
Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days
[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
@endgantt

16.13.15 Avec zoom

@startgantt
projectscale yearly zoom 2
Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days

Guide de référence du langage PlantUML (1.2025.0) 366 / 580

16.14 Weekscale with Weeknumbers or Calendar Date 16 DIAGRAMME DE GANTT

[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
@endgantt

16.14 Weekscale with Weeknumbers or Calendar Date
16.14.1 With Weeknumbers (by default)

@startgantt
printscale weekly
Project starts the 6th of July 2020
[Task1] on {Alice} requires 2 weeks
[Task2] on {Bob:50%} requires 2 weeks
then [Task3] on {Alice:25%} requires 3 days
@endgantt

16.14.2 With Weeknumbers (starting from 1)

@startgantt
printscale weekly with week numbering from 1
Project starts the 6th of July 2020
[Task1] on {Alice} requires 2 weeks
[Task2] on {Bob:50%} requires 2 weeks
then [Task3] on {Alice:25%} requires 3 days
@endgantt

[Ref. GH-525]

16.14.3 With Calendar Date

@startgantt
printscale weekly with calendar date
Project starts the 6th of July 2020
[Task1] on {Alice} requires 2 weeks
[Task2] on {Bob:50%} requires 2 weeks
then [Task3] on {Alice:25%} requires 3 days
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 367 / 580

16.15 Jour non travaillé 16 DIAGRAMME DE GANTT

[Ref. QA-11630]

16.15 Jour non travaillé
Il est possible de fermer un jour.

@startgantt
project starts the 2018/04/09
saturday are closed
sunday are closed
2018/05/01 is closed
2018/04/17 to 2018/04/19 is closed
[Prototype design] requires 14 days
[Test prototype] requires 4 days
[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Fuchsia/FireBrick
[Test prototype] is colored in GreenYellow/Green
@endgantt

Il est ensuite possible d’ouvrir un jour fermé.

@startgantt
2020-07-07 to 2020-07-17 is closed
2020-07-13 is open

Project starts the 2020-07-01
[Prototype design] requires 10 days
Then [Test prototype] requires 10 days
@endgantt

16.16 Définition d’une semaine en fonction des jours fermés
Une semaine est un synonyme du nombre de jours non fermés qu’il y a dans une semaine, comme :

@startgantt
Language fr
Project starts 2021-03-29
[Review 01] happens at 2021-03-29
[Review 02 - 3 weeks] happens on 3 weeks after [Review 01]'s end

Guide de référence du langage PlantUML (1.2025.0) 368 / 580

16.17 Working days 16 DIAGRAMME DE GANTT

[Review 02 - 21 days] happens on 21 days after [Review 01]'s end
@endgantt

Ainsi, si vous spécifiez que le samedi et le dimanche sont fermés, une semaine équivaudra à 5 jours,
comme :

@startgantt
Language fr
Project starts 2021-03-29
saturday are closed
sunday are closed
[Review 01] happens at 2021-03-29
[Review 02 - 3 weeks] happens on 3 weeks after [Review 01]'s end
[Review 02 - 21 days] happens on 21 days after [Review 01]'s end
@endgantt

[Réf. QA-13434]

16.17 Working days
It is possible to manage working days.

@startgantt

saturday are closed
sunday are closed
2022-07-04 to 2022-07-15 is closed

Project starts 2022-06-27
[task1] starts at 2022-06-27 and requires 1 week
[task2] starts 2 working days after [task1]'s end and requires 3 days

@endgantt

[Ref. QA-16188]

16.18 Succession de tâches simplifiée
Il est possible d’utiliser le mot-clé then pour désigner des tâches consécutives.

Guide de référence du langage PlantUML (1.2025.0) 369 / 580

16.19 Travailler avec des ressources 16 DIAGRAMME DE GANTT

@startgantt
[Prototype design] requires 14 days
then [Test prototype] requires 4 days
then [Deploy prototype] requires 6 days
@endgantt

Vous pouvez également utiliser la flèche ->

@startgantt
[Prototype design] requires 14 days
[Build prototype] requires 4 days
[Prepare test] requires 6 days
[Prototype design] -> [Build prototype]
[Prototype design] -> [Prepare test]
@endgantt

16.19 Travailler avec des ressources
Vous pouvez affecter des tâches à des ressources en utilisant le mot-clé on et des parenthèses pour le nom
de la ressource.

@startgantt
[Task1] on {Alice} requires 10 days
[Task2] on {Bob:50%} requires 2 days
then [Task3] on {Alice:25%} requires 1 days
@endgantt

Plusieurs ressources peuvent être affectées à une tâche :

@startgantt
[Task1] on {Alice} {Bob} requires 20 days
@endgantt

Les ressources peuvent être marquées comme étant hors service certains jours :

@startgantt
project starts on 2020-06-19

Guide de référence du langage PlantUML (1.2025.0) 370 / 580

16.20 Hide resources 16 DIAGRAMME DE GANTT

[Task1] on {Alice} requires 10 days
{Alice} is off on 2020-06-24 to 2020-06-26
@endgantt

16.20 Hide resources
16.20.1 Without any hiding (by default)

@startgantt
[Task1] on {Alice} requires 10 days
[Task2] on {Bob:50%} requires 2 days
then [Task3] on {Alice:25%} requires 1 days
then [Task4] on {Alice:25%} {Bob} requires 1 days
@endgantt

16.20.2 Hide resources names

You can hide resources names and percentage, on tasks, using the hide resources names keywords.

@startgantt
hide resources names
[Task1] on {Alice} requires 10 days
[Task2] on {Bob:50%} requires 2 days
then [Task3] on {Alice:25%} requires 1 days
then [Task4] on {Alice:25%} {Bob} requires 1 days
@endgantt

16.20.3 Hide resources footbox

You can also hide resources names on bottom of the diagram using the hide resources footbox
keywords.

@startgantt
hide resources footbox
[Task1] on {Alice} requires 10 days

Guide de référence du langage PlantUML (1.2025.0) 371 / 580

16.21 Séparateur horizontal 16 DIAGRAMME DE GANTT

[Task2] on {Bob:50%} requires 2 days
then [Task3] on {Alice:25%} requires 1 days
then [Task4] on {Alice:25%} {Bob} requires 1 days
@endgantt

16.20.4 Hide the both (resources names and resources footbox)

You can also hide the both.

@startgantt
hide resources names
hide resources footbox
[Task1] on {Alice} requires 10 days
[Task2] on {Bob:50%} requires 2 days
then [Task3] on {Alice:25%} requires 1 days
then [Task4] on {Alice:25%} {Bob} requires 1 days
@endgantt

16.21 Séparateur horizontal
Vous pouvez utiliser -- pour séparer des ensembles de tâches.

@startgantt
[Task1] requires 10 days
then [Task2] requires 4 days
-- Phase Two --
then [Task3] requires 5 days
then [Task4] requires 6 days
@endgantt

16.22 Vertical Separator
You can add Vertical Separators with the syntax: Separator just [at].

@startgantt
[task1] requires 1 week
[task2] starts 20 days after [task1]'s end and requires 3 days

Separator just at [task1]'s end
Separator just 2 days after [task1]'s end

Guide de référence du langage PlantUML (1.2025.0) 372 / 580

16.23 Exemple complexe 16 DIAGRAMME DE GANTT

Separator just at [task2]'s start
Separator just 2 days before [task2]'s start
@endgantt

[Ref. QA-16247]

16.23 Exemple complexe
Il est également possible d’utiliser la conjonction and.

Vous pouvez également ajouter des délais dans les contraintes.

@startgantt
[Prototype design] requires 13 days and is colored in Lavender/LightBlue
[Test prototype] requires 9 days and is colored in Coral/Green and starts 3 days after [Prototype design]'s end
[Write tests] requires 5 days and ends at [Prototype design]'s end
[Hire tests writers] requires 6 days and ends at [Write tests]'s start
[Init and write tests report] is colored in Coral/Green
[Init and write tests report] starts 1 day before [Test prototype]'s start and ends at [Test prototype]'s end
@endgantt

16.24 Comments
As is mentioned on Common Commands page: �blockquote�� Everything that starts with simple quote
' is a comment.

You can also put comments on several lines using /' to start and '/ to end. �blockquote�� (i.e.: the first
character (except space character) of a comment line must be a simple quote ')

@startgantt
' This is a comment

[T1] requires 3 days

/' this comment
is on several lines '/

[T2] starts at [T1]'s end and requires 1 day
@endgantt

16.25 Avec style
16.25.1 Sans style (par défaut)

@startgantt
[Task1] requires 20 days
note bottom

Guide de référence du langage PlantUML (1.2025.0) 373 / 580

16.25 Avec style 16 DIAGRAMME DE GANTT

memo1 ...
memo2 ...
explanations1 ...
explanations2 ...

end note
[Task2] requires 4 days
[Task1] -> [Task2]
-- Separator title --
[M1] happens on 5 days after [Task1]'s end
-- end --
@endgantt

16.25.2 Avec style

Vous pouvez utiliser le style pour modifier le rendu des éléments.

@startgantt
<style>
ganttDiagram {
task {
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue
}
milestone {
FontColor blue
FontSize 25
FontStyle italic
BackGroundColor yellow
LineColor red
}
note {
FontColor DarkGreen
FontSize 10
LineColor OrangeRed
}
arrow {
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue
}
separator {
LineColor red

Guide de référence du langage PlantUML (1.2025.0) 374 / 580

16.25 Avec style 16 DIAGRAMME DE GANTT

BackGroundColor green
FontSize 16
FontStyle bold
FontColor purple
}
}
</style>
[Task1] requires 20 days
note bottom

memo1 ...
memo2 ...
explanations1 ...
explanations2 ...

end note
[Task2] requires 4 days
[Task1] -> [Task2]
-- Separator title --
[M1] happens on 5 days after [Task1]'s end
-- end --
@endgantt

[Ref. QA-10835, QA-12045, QA-11877 et PR-438]

16.25.3 Avec style (exemple complet)

@startgantt
<style>
ganttDiagram {
task {
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue
}
milestone {
FontColor blue
FontSize 25
FontStyle italic
BackGroundColor yellow
LineColor red
}
note {
FontColor DarkGreen
FontSize 10
LineColor OrangeRed

Guide de référence du langage PlantUML (1.2025.0) 375 / 580

16.25 Avec style 16 DIAGRAMME DE GANTT

}
arrow {
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue
LineStyle 8.0;13.0
LineThickness 3.0
}
separator {
BackgroundColor lightGreen
LineStyle 8.0;3.0
LineColor red
LineThickness 1.0
FontSize 16
FontStyle bold
FontColor purple
Margin 5
Padding 20
}
timeline {

BackgroundColor Bisque
}
closed {
BackgroundColor pink
FontColor red
}
}
</style>
Project starts the 2020-12-01

[Task1] requires 10 days
sunday are closed

note bottom
memo1 ...
memo2 ...
explanations1 ...
explanations2 ...

end note

[Task2] requires 20 days
[Task2] starts 10 days after [Task1]'s end
-- Separator title --
[M1] happens on 5 days after [Task1]'s end

<style>
separator {

LineColor black
Margin 0
Padding 0
}
</style>

-- end --
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 376 / 580

16.25 Avec style 16 DIAGRAMME DE GANTT

[Réf. QA-13570, QA-13672]

TODO: FAIT Merci pour le style pour le Séparateur et tous les styles pour la Flèche (épaisseur...)

16.25.4 Nettoyer le style

Avec le style, vous pouvez également nettoyer un diagramme de Gantt (montrant uniquement les tâches,
les dépendances et les durées relatives - mais pas de date de début réelle et pas d’échelle réelle):

@startgantt
<style>
ganttDiagram {

timeline {
LineColor transparent
FontColor transparent

}
}
</style>

hide footbox
[Test prototype] requires 7 days
[Prototype completed] happens at [Test prototype]'s end
[Setup assembly line] requires 9 days
[Setup assembly line] starts at [Test prototype]'s end
then [Setup] requires 5 days
[T2] requires 2 days and starts at [Test prototype]'s end
then [T3] requires 3 days
-- end task --
then [T4] requires 2 days
@endgantt

[Réf. QA-13971]

Ou :

@startgantt

Guide de référence du langage PlantUML (1.2025.0) 377 / 580

16.26 Ajouter des notes 16 DIAGRAMME DE GANTT

<style>
ganttDiagram {

timeline {
LineColor transparent
FontColor transparent

}
closed {
FontColor transparent

}
}
</style>

hide footbox
project starts the 2018/04/09
saturday are closed
sunday are closed
2018/05/01 is closed
2018/04/17 to 2018/04/19 is closed
[Prototype design] requires 9 days
[Test prototype] requires 5 days
[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Fuchsia/FireBrick
[Test prototype] is colored in GreenYellow/Green
@endgantt

[Réf. QA-13464]

16.26 Ajouter des notes
@startgantt
[task01] requires 15 days
note bottom

memo1 ...
memo2 ...
explanations1 ...
explanations2 ...

end note

[task01] -> [task02]

@endgantt

Exemple avec chevauchement

@startgantt
[task01] requires 15 days
note bottom

memo1 ...
memo2 ...

Guide de référence du langage PlantUML (1.2025.0) 378 / 580

16.26 Ajouter des notes 16 DIAGRAMME DE GANTT

explanations1 ...
explanations2 ...

end note

[task01] -> [task02]
[task03] requires 5 days

@endgantt

@startgantt

-- test01 --

[task01] requires 4 days
note bottom
'note left
memo1 ...
memo2 ...
explanations1 ...
explanations2 ...
end note

[task02] requires 8 days
[task01] -> [task02]
note bottom
'note left
memo1 ...
memo2 ...
explanations1 ...
explanations2 ...
end note
-- test02 --

[task03] as [t3] requires 7 days
[t3] -> [t4]
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 379 / 580

16.27 Pause des tâches 16 DIAGRAMME DE GANTT

TODO: FAIT Merci pour la correction (de #386 sur la v1.2020.18) lors d’un chevauchement

@startgantt

Project starts 2020-09-01

[taskA] starts 2020-09-01 and requires 3 days
[taskB] starts 2020-09-10 and requires 3 days
[taskB] displays on same row as [taskA]

[task01] starts 2020-09-05 and requires 4 days

then [task02] requires 8 days
note bottom

note for task02
more notes

end note

then [task03] requires 7 days
note bottom

note for task03
more notes

end note

-- separator --

[taskC] starts 2020-09-02 and requires 5 days
[taskD] starts 2020-09-09 and requires 5 days
[taskD] displays on same row as [taskC]

[task 10] starts 2020-09-05 and requires 5 days
then [task 11] requires 5 days
note bottom

note for task11
more notes

end note
@endgantt

16.27 Pause des tâches
@startgantt
Project starts the 5th of december 2018
saturday are closed

Guide de référence du langage PlantUML (1.2025.0) 380 / 580

16.28 Modifier les couleurs des liens 16 DIAGRAMME DE GANTT

sunday are closed
2018/12/29 is opened
[Prototype design] requires 17 days
[Prototype design] pauses on 2018/12/13
[Prototype design] pauses on 2018/12/14
[Prototype design] pauses on monday
[Test prototype] starts at [Prototype design]'s end and requires 2 weeks
@endgantt

16.28 Modifier les couleurs des liens
Vous pouvez modifier les couleurs des liens :

• avec cette syntaxe :* with <color> <style> link

@startgantt
[T1] requires 4 days
[T2] requires 4 days and starts 3 days after [T1]'s end with blue dotted link
[T3] requires 4 days and starts 3 days after [T2]'s end with green bold link
[T4] requires 4 days and starts 3 days after [T3]'s end with green dashed link
@endgantt

• ou directement en utilisant le style flèche

@startgantt
<style>
ganttDiagram {
arrow {
LineColor blue
}
}
</style>
[Prototype design] requires 7 days
[Build prototype] requires 4 days
[Prepare test] requires 6 days
[Prototype design] -[#FF00FF]-> [Build prototype]
[Prototype design] -[dotted]-> [Prepare test]
Then [Run test] requires 4 days
@endgantt

[Réf. QA-13693]

Guide de référence du langage PlantUML (1.2025.0) 381 / 580

16.29 Tâches ou jalons sur la même ligne 16 DIAGRAMME DE GANTT

16.29 Tâches ou jalons sur la même ligne
Vous pouvez placer des tâches ou des jalons sur la même ligne, avec cette syntaxe :

• [T|M] displays on same row as [T|M]

@startgantt
[Prototype design] requires 13 days
[Test prototype] requires 4 days and 1 week
[Test prototype] starts 1 week and 2 days after [Prototype design]'s end
[Test prototype] displays on same row as [Prototype design]
[r1] happens on 5 days after [Prototype design]'s end
[r2] happens on 5 days after [r1]'s end
[r3] happens on 5 days after [r2]'s end
[r2] displays on same row as [r1]
[r3] displays on same row as [r1]
@endgantt

16.30 Mise en avant aujourd’hui
@startgantt
Project starts the 20th of september 2018
sunday are close
2018/09/21 to 2018/09/23 are colored in salmon
2018/09/21 to 2018/09/30 are named [Vacation in the Bahamas]

today is 30 days after start and is colored in #AAF
[Foo] happens 40 days after start
[Dummy] requires 10 days and starts 10 days after start

@endgantt

16.31 Tâche entre deux jalons
@startgantt
Language fr
project starts on 2020-07-01
[P_start] happens 2020-07-03
[P_end] happens 2020-07-13
[Prototype design] occurs from [P_start] to [P_end]
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 382 / 580

16.32 Grammar and verbal form 16 DIAGRAMME DE GANTT

16.32 Grammar and verbal form
Verbal form Example
[T] starts
[M] happens

16.33 Ajouter un titre, un en-tête, un pied de page, une légende ou une
légende

@startgantt

header some header

footer some footer

title My title

[Prototype design] requires 13 days

legend
The legend
end legend

caption This is caption

@endgantt

(Voir aussi : Commandes communes)

16.34 Add color on legend
@startgantt
[Kick off] requires 1 days and is colored in blue
then [Prototype design] requires 5 days
[Test prototype] requires 4 days
[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Green
[Test prototype] is colored in gray

legend
Legend:
= Color	= Task Type
<#gray>	Planned
<#Green>	In progress
<#blue>	Done
end legend

@endgantt

Guide de référence du langage PlantUML (1.2025.0) 383 / 580

16.35 Suppression des boîtes de pied (exemple pour toutes les échelles)16 DIAGRAMME DE GANTT

[Ref. QA-19021]

16.35 Suppression des boîtes de pied (exemple pour toutes les échelles)
Vous pouvez utiliser les mots-clés hide footbox pour supprimer les boîtes de pied du diagramme de
gantt (comme pour le diagramme de séquence).

Exemples sur :

• échelle quotidienne (sans début de projet)

@startgantt

hide footbox
title Foot Box removed

[Prototype design] requires 15 days
[Test prototype] requires 10 days
@endgantt

• échelle journalière

@startgantt

Project starts the 20th of september 2017
[Prototype design] as [TASK1] requires 13 days
[TASK1] is colored in Lavender/LightBlue

hide footbox
@endgantt

• échelle hebdomadaire

@startgantt
hide footbox

printscale weekly
saturday are closed
sunday are closed

Project starts the 1st of january 2021

Guide de référence du langage PlantUML (1.2025.0) 384 / 580

16.35 Suppression des boîtes de pied (exemple pour toutes les échelles)16 DIAGRAMME DE GANTT

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

• échelle mensuelle

@startgantt

hide footbox

projectscale monthly
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

• échelle trimestrielle

@startgantt

hide footbox

projectscale quarterly
Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days
[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
@endgantt

• échelle annuelle

@startgantt

hide footbox

Guide de référence du langage PlantUML (1.2025.0) 385 / 580

16.36 Langue du calendrier 16 DIAGRAMME DE GANTT

projectscale yearly
Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days
[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
@endgantt

16.36 Langue du calendrier
Vous pouvez choisir la langue du calendrier Gantt, avec la commande language <xx> où <xx> est le code
ISO 639 de la langue.

16.36.1 English (en, par défaut)

@startgantt
saturday are closed
sunday are closed

Project starts 2021-01-01
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.36.2 Allemand (de)

@startgantt
language de
saturday are closed
sunday are closed

Project starts 2021-01-01
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 386 / 580

16.36 Langue du calendrier 16 DIAGRAMME DE GANTT

16.36.3 Japonais (ja)

@startgantt
language ja
saturday are closed
sunday are closed

Project starts 2021-01-01
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.36.4 Chinois (zh)

@startgantt
language zh
saturday are closed
sunday are closed

Project starts 2021-01-01
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.36.5 Coréen (ko)

@startgantt
language ko
saturday are closed
sunday are closed

Guide de référence du langage PlantUML (1.2025.0) 387 / 580

16.37 Supprimer des tâches ou des jalons 16 DIAGRAMME DE GANTT

Project starts 2021-01-01
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon
@endgantt

16.37 Supprimer des tâches ou des jalons
Vous pouvez marquer certaines tâches ou certains jalons comme deleted au lieu de normalement terminés
pour distinguer les tâches qui ont pu être éventuellement écartées, reportées ou autres

@startgantt
[Prototype design] requires 1 weeks
then [Prototype completed] requires 4 days
[End Prototype completed] happens at [Prototype completed]'s end
then [Test prototype] requires 5 days
[End Test prototype] happens at [Test prototype]'s end

[Prototype completed] is deleted
[End Prototype completed] is deleted
@endgantt

[Réf. QA-9129]

16.38 Start a project, a task or a milestone a number of days before or after
today

You can start a project, a task or a milestone a number of days before or after today, using the builtin
functions %now and %date:

@startgantt
title Today is %date("YYYY-MM-dd")
!$now = %now()
!$past = %date("YYYY-MM-dd", $now - 14*24*3600)
Project starts $past
today is colored in pink
[foo] requires 10 days
[bar] requires 5 days and starts %date("YYYY-MM-dd", $now + 4*24*3600)
[Tomorrow] happens %date("YYYY-MM-dd", $now + 1*24*3600)
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 388 / 580

16.39 Change Label position 16 DIAGRAMME DE GANTT

[Ref. QA-16285]

16.39 Change Label position
16.39.1 The labels are near elements (by default)

@startgantt
[Task1] requires 1 days
then [Task2_long_long_long] as [T2] requires 2 days
-- Phase Two --
then [Task3] as [T3] requires 2 days
[Task4] as [T4] requires 1 day
[Task5] as [T5] requires 2 days
[T2] -> [T4]
[T2] -> [T5]
[Task6_long_long_long] as [T6] requires 4 days
[T3] -> [T6]
[T5] -> [T6]
[End] happens 1 day after [T6]'s end
@endgantt

To change the label position, you can use the command label:

16.39.2 Label on first column

• Left aligned

@startgantt
Label on first column and left aligned
[Task1] requires 1 days
then [Task2_long_long_long] as [T2] requires 2 days
-- Phase Two --
then [Task3] as [T3] requires 2 days
[Task4] as [T4] requires 1 day
[Task5] as [T5] requires 2 days
[T2] -> [T4]
[T2] -> [T5]
[Task6_long_long_long] as [T6] requires 4 days
[T3] -> [T6]
[T5] -> [T6]
[End] happens 1 day after [T6]'s end

Guide de référence du langage PlantUML (1.2025.0) 389 / 580

16.39 Change Label position 16 DIAGRAMME DE GANTT

@endgantt

• Right aligned

@startgantt
Label on first column and right aligned
[Task1] requires 1 days
then [Task2_long_long_long] as [T2] requires 2 days
-- Phase Two --
then [Task3] as [T3] requires 2 days
[Task4] as [T4] requires 1 day
[Task5] as [T5] requires 2 days
[T2] -> [T4]
[T2] -> [T5]
[Task6_long_long_long] as [T6] requires 4 days
[T3] -> [T6]
[T5] -> [T6]
[End] happens 1 day after [T6]'s end
@endgantt

16.39.3 Label on last column

• Left aligned

@startgantt
Label on last column and left aligned
[Task1] requires 1 days
then [Task2_long_long_long] as [T2] requires 2 days
-- Phase Two --
then [Task3] as [T3] requires 2 days
[Task4] as [T4] requires 1 day
[Task5] as [T5] requires 2 days
[T2] -> [T4]
[T2] -> [T5]
[Task6_long_long_long] as [T6] requires 4 days
[T3] -> [T6]
[T5] -> [T6]
[End] happens 1 day after [T6]'s end
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 390 / 580

16.39 Change Label position 16 DIAGRAMME DE GANTT

• Right aligned

@startgantt
Label on last column and right aligned
[Task1] requires 1 days
then [Task2_long_long_long] as [T2] requires 2 days
-- Phase Two --
then [Task3] as [T3] requires 2 days
[Task4] as [T4] requires 1 day
[Task5] as [T5] requires 2 days
[T2] -> [T4]
[T2] -> [T5]
[Task6_long_long_long] as [T6] requires 4 days
[T3] -> [T6]
[T5] -> [T6]
[End] happens 1 day after [T6]'s end
@endgantt

[Ref. QA-12433]

Guide de référence du langage PlantUML (1.2025.0) 391 / 580

17 MINDMAP

17 MindMap
Un diagramme MindMap, dans le contexte de PlantUML, est un outil efficace pour le brain-
storming, l’organisation des idées et la planification de projets. Les diagrammes MindMap, ou cartes
heuristiques, sont des représentations visuelles de l’information, où les idées centrales se ramifient en
sujets connexes, créant une toile d’araignée de concepts. PlantUML facilite la création de ces diagrammes
grâce à sa syntaxe simple, basée sur le texte, qui permet d’organiser et de visualiser efficacement des
idées complexes.

L’utilisation de PlantUML pour les MindMaps est particulièrement avantageuse en raison de son inté-
gration avec d’autres outils et systèmes. Cette intégration rationalise le processus d’incorporation
des cartes heuristiques dans la documentation d’un projet plus vaste. L’approche textuelle de PlantUML
permet également de modifier facilement les cartes mentales et d’en contrôler la version, ce qui en fait
un outil dynamique pour le brainstorming collaboratif et le développement d’idées.

Les cartes mentales dans PlantUML peuvent être utilisées à des fins diverses, de l’esquisse de la structure
d’un projet au brainstorming sur les caractéristiques d’un produit ou les stratégies commerciales. La
présentation hiérarchique et intuitive des cartes mentales permet d’identifier les relations entre
différentes idées et concepts, ce qui facilite la vision d’ensemble et permet d’identifier les domaines qui
nécessitent une exploration plus approfondie. PlantUML est donc un outil précieux pour les chefs de
projet, les développeurs et les analystes commerciaux qui ont besoin d’une méthode pour organiser
visuellement et présenter des informations complexes de manière claire et concise.

17.1 Syntaxe OrgMode
Cette syntaxe est compatible avec OrgMode

@startmindmap
* Debian
** Ubuntu
*** Linux Mint
*** Kubuntu
*** Lubuntu
*** KDE Neon
** LMDE
** SolydXK
** SteamOS
** Raspbian with a very long name
*** <s>Raspmbc</s> => OSMC
*** <s>Raspyfi</s> => Volumio
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 392 / 580

17.2 Syntaxe Markdown 17 MINDMAP

17.2 Syntaxe Markdown
La syntaxe Markdown est supportée.

@startmindmap
* root node
* some first level node
* second level node
* another second level node
* another first level node
@endmindmap

17.3 Notation arithmétique [+, -]
Vous pouvez utiliser la notation suivante pour orienter votre diagramme.

@startmindmap
+ OS
++ Ubuntu
+++ Linux Mint
+++ Kubuntu
+++ Lubuntu
+++ KDE Neon
++ LMDE
++ SolydXK
++ SteamOS
++ Raspbian

Guide de référence du langage PlantUML (1.2025.0) 393 / 580

17.4 Multilignes 17 MINDMAP

-- Windows 95
-- Windows 98
-- Windows NT
--- Windows 8
--- Windows 10
@endmindmap

17.4 Multilignes
Le contenu multiligne des boîtes commence avec : et finisse avec ;.

@startmindmap
* Class Templates
**:Example 1
<code>
template <typename T>
class cname{
void f1()<U+003B>
...
}
</code>
;
**:Example 2
<code>
other template <typename T>
class cname{
...
</code>
;
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 394 / 580

17.5 Multiroot Mindmap 17 MINDMAP

(Penser à échapper le ;, s’il apparait en fin de ligne intermédiaire dans le contenu, par exemple par son
correspondant unicode <U+003B>)

17.5 Multiroot Mindmap
You can create multiroot mindmap, as:

@startmindmap
* Root 1
** Foo
** Bar
* Root 2
** Lorem
** Ipsum
@endmindmap

[Ref. QH-773]

17.6 Couleurs
Il est possible de changer la couleur des nœuds.

17.6.1 Avec couleur en ligne

• OrgMode syntaxe mindmap

@startmindmap
*[#Orange] Colors
**[#lightgreen] Green
**[#FFBBCC] Rose

Guide de référence du langage PlantUML (1.2025.0) 395 / 580

17.6 Couleurs 17 MINDMAP

**[#lightblue] Blue
@endmindmap

• Syntaxe de la notation arithmétique mindmap

@startmindmap
+[#Orange] Colors
++[#lightgreen] Green
++[#FFBBCC] Rose
--[#lightblue] Blue
@endmindmap

• Carte heuristique de la syntaxe Markdown

@startmindmap
*[#Orange] root node
*[#lightgreen] some first level node
*[#FFBBCC] second level node
*[#lightblue] another second level node
*[#lightgreen] another first level node

@endmindmap

17.6.2 Avec couleur de style

• Carte mentale de syntaxe OrgMode

@startmindmap
<style>
mindmapDiagram {

.green {
BackgroundColor lightgreen

}
.rose {

Guide de référence du langage PlantUML (1.2025.0) 396 / 580

17.6 Couleurs 17 MINDMAP

BackgroundColor #FFBBCC
}
.your_style_name {

BackgroundColor lightblue
}

}
</style>
* Colors
** Green <<green>>
** Rose <<rose>>
** Blue <<your_style_name>>
@endmindmap

• Cartographie de la syntaxe de la notation arithmétique

@startmindmap
<style>
mindmapDiagram {

.green {
BackgroundColor lightgreen

}
.rose {
BackgroundColor #FFBBCC

}
.your_style_name {
BackgroundColor lightblue

}
}
</style>
+ Colors
++ Green <<green>>
++ Rose <<rose>>
-- Blue <<your_style_name>>
@endmindmap

• Carte heuristique de la syntaxe Markdown

@startmindmap
<style>
mindmapDiagram {

.green {
BackgroundColor lightgreen

Guide de référence du langage PlantUML (1.2025.0) 397 / 580

17.7 Masquer les bordures [_] 17 MINDMAP

}
.rose {

BackgroundColor #FFBBCC
}
.your_style_name {

BackgroundColor lightblue
}

}
</style>
* root node
* some first level node <<green>>
* second level node <<rose>>
* another second level node <<your_style_name>>
* another first level node <<green>>

@endmindmap

[Ref. GA-920]

17.7 Masquer les bordures [_]
Vous pouvez enlever les contours des boîtes en utilisant le caractère tiret bas (_), comme pour les
diagrammes de type WBS.

@startmindmap
* root node
** some first level node
***_ second level node
***_ another second level node
***_ foo
***_ bar
***_ foobar
** another first level node
@endmindmap

@startmindmap
*_ root node
**_ some first level node
***_ second level node
***_ another second level node
***_ foo

Guide de référence du langage PlantUML (1.2025.0) 398 / 580

17.8 Diagramme multi-directionnel 17 MINDMAP

***_ bar
***_ foobar
**_ another first level node
@endmindmap

@startmindmap
+ root node
++ some first level node
+++_ second level node
+++_ another second level node
+++_ foo
+++_ bar
+++_ foobar
++_ another first level node
-- some first right level node
--_ another first right level node
@endmindmap

17.8 Diagramme multi-directionnel
Il est possible d’utiliser les deux côtés du diagramme.

@startmindmap
* count
** 100
*** 101
*** 102
** 200

left side

** A
*** AA
*** AB
** B
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 399 / 580

17.9 Change (whole) diagram orientation 17 MINDMAP

17.9 Change (whole) diagram orientation
You can change (whole) diagram orientation with:

• left to right direction (by default)

• top to bottom direction

• right to left direction

• bottom to top direction (not yet implemented/issue then use workaround)

17.9.1 Left to right direction (by default)

@startmindmap
* 1
** 2
*** 4
*** 5
** 3
*** 6
*** 7
@endmindmap

17.9.2 Top to bottom direction

@startmindmap
top to bottom direction
* 1
** 2
*** 4
*** 5
** 3
*** 6
*** 7
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 400 / 580

17.10 Exemple complet 17 MINDMAP

17.9.3 Right to left direction

@startmindmap
right to left direction
* 1
** 2
*** 4
*** 5
** 3
*** 6
*** 7
@endmindmap

17.9.4 Bottom to top direction

@startmindmap
top to bottom direction
left side
* 1
** 2
*** 4
*** 5
** 3
*** 6
*** 7
@endmindmap

[Ref. QH-1413]

17.10 Exemple complet
@startmindmap
caption figure 1
title My super title

* <&flag>Debian

Guide de référence du langage PlantUML (1.2025.0) 401 / 580

17.11 Changement de style 17 MINDMAP

** <&globe>Ubuntu
*** Linux Mint
*** Kubuntu
*** Lubuntu
*** KDE Neon
** <&graph>LMDE
** <&pulse>SolydXK
** <&people>SteamOS
** <&star>Raspbian with a very long name
*** <s>Raspmbc</s> => OSMC
*** <s>Raspyfi</s> => Volumio

header
My super header
endheader

center footer My super footer

legend right
Short
legend

endlegend
@endmindmap

17.11 Changement de style
17.11.1 nœud, profondeur

@startmindmap

Guide de référence du langage PlantUML (1.2025.0) 402 / 580

17.11 Changement de style 17 MINDMAP

<style>
mindmapDiagram {

node {
BackgroundColor lightGreen

}
:depth(1) {
BackGroundColor white

}
}
</style>
* Linux
** NixOS
** Debian
*** Ubuntu
**** Linux Mint
**** Kubuntu
**** Lubuntu
**** KDE Neon
@endmindmap

17.11.2 sans boîte

@startmindmap
<style>
mindmapDiagram {

node {
BackgroundColor lightGreen

}
boxless {
FontColor darkgreen

}
}
</style>
* Linux
** NixOS
** Debian
***_ Ubuntu
**** Linux Mint
**** Kubuntu
**** Lubuntu
**** KDE Neon
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 403 / 580

17.12 Word Wrap 17 MINDMAP

17.12 Word Wrap
Le paramètre MaximumWidth permet de contrôler le retour à ligne automatique. L’unité utilisée est le
pixel

@startmindmap

<style>
node {

Padding 12
Margin 3
HorizontalAlignment center
LineColor blue
LineThickness 3.0
BackgroundColor gold
RoundCorner 40
MaximumWidth 100

}

rootNode {
LineStyle 8.0;3.0
LineColor red
BackgroundColor white
LineThickness 1.0
RoundCorner 0
Shadowing 0.0

}

leafNode {
LineColor gold
RoundCorner 0
Padding 3

}

arrow {
LineStyle 4
LineThickness 0.5
LineColor green

}
</style>

* Hi =)
** sometimes i have node in wich i want to write a long text
*** this results in really huge diagram

Guide de référence du langage PlantUML (1.2025.0) 404 / 580

17.13 Creole on Mindmap diagram 17 MINDMAP

**** of course, i can explicit split with a\nnew line
**** but it could be cool if PlantUML was able to split long lines, maybe with an option

@endmindmap

17.13 Creole on Mindmap diagram
You can use Creole or HTML Creole on Mindmap:

@startmindmap
* Creole on Mindmap
left side
**:==Creole

This is **bold**
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~

--test Unicode and icons--
This is <U+221E> long
This is a <&code> icon
Use image : <img:https://plantuml.com/logo3.png>

;
**: HTML Creole

This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>
This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>

-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>Orange background</back>
This is <size:20>big</size>

;
right side
**:==Creole line
You can have horizontal line

Or double line
====
Or strong line

Guide de référence du langage PlantUML (1.2025.0) 405 / 580

17.13 Creole on Mindmap diagram 17 MINDMAP

Or dotted line
..My title..
Or dotted title
//and title... //
==Title==
Or double-line title
--Another title--
Or single-line title
Enjoy!;
**:==Creole list item
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
;
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 406 / 580

17.13 Creole on Mindmap diagram 17 MINDMAP

[Ref. QA-17838]

Guide de référence du langage PlantUML (1.2025.0) 407 / 580

18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

18 Structure de répartition du travail (WBS)
Un diagramme de structure de répartition du travail est un outil clé de gestion de projet qui décompose
un projet en composants ou tâches plus petits et plus faciles à gérer. Il s’agit essentiellement d’une
décomposition hiérarchique de l’étendue totale du travail à effectuer par l’équipe du projet pour
atteindre les objectifs du projet et créer les produits livrables requis.

PlantUML peut être particulièrement utile pour créer des diagrammes WBS. Grâce à ses dia-
grammes textuels, la création et la mise à jour d’un WBS sont aussi simples que l’édition d’un document
texte, ce qui est particulièrement utile pour gérer les changements au cours du cycle de vie d’un projet.
Cette approche permet une intégration facile avec les systèmes de contrôle des versions, ce qui
garantit que toutes les modifications sont suivies et que l’historique de l’évolution de l’OTP est conservé.

En outre, la compatibilité de PlantUML avec divers autres outils renforce son utilité dans les envi-
ronnements collaboratifs. Les équipes peuvent facilement intégrer leurs diagrammes WBS dans des
systèmes de documentation et de gestion de projets plus vastes. La simplicité de la syntaxe de PlantUML
permet des ajustements rapides, ce qui est crucial dans les environnements de projets dynamiques
où la portée et les tâches peuvent changer fréquemment. Par conséquent, l’utilisation de PlantUML pour
les diagrammes WBS combine la clarté d’une décomposition visuelle avec l’agilité et le contrôle d’un
système basé sur le texte, ce qui en fait un atout précieux pour une gestion de projet efficace.

18.1 Syntaxe OrgMode
La syntaxe est compatible avec celle de OrgMode.

@startwbs
* Business Process Modelling WBS
** Launch the project
*** Complete Stakeholder Research
*** Initial Implementation Plan
** Design phase
*** Model of AsIs Processes Completed
**** Model of AsIs Processes Completed1
**** Model of AsIs Processes Completed2
*** Measure AsIs performance metrics
*** Identify Quick Wins
** Complete innovate phase
@endwbs

Guide de référence du langage PlantUML (1.2025.0) 408 / 580

18.2 Changement de direction [<, >] 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

18.2 Changement de direction [<, >]
Vous pouvez changer de direction en utilisant :

• <

• >

@startwbs
* Business Process Modelling WBS
** Launch the project
*** Complete Stakeholder Research
*** Initial Implementation Plan
** Design phase
*** Model of AsIs Processes Completed
****< Model of AsIs Processes Completed1
****> Model of AsIs Processes Completed2
***< Measure AsIs performance metrics
***< Identify Quick Wins
@endwbs

18.3 Notation arithmétique [+, -]
Vous pouvez utiliser la notation suivante (avec des + ou des -) pour choisir le côté du diagramme.

@startwbs
+ New Job
++ Decide on Job Requirements
+++ Identity gaps
+++ Review JDs
++++ Sign-Up for courses
++++ Volunteer
++++ Reading
++- Checklist
+++- Responsibilities
+++- Location
++ CV Upload Done
+++ CV Updated
++++ Spelling & Grammar
++++ Check dates
---- Skills
+++ Recruitment sites chosen
@endwbs

Guide de référence du langage PlantUML (1.2025.0) 409 / 580

18.4 Multi-lignes 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

18.4 Multi-lignes
Vous pouvez utiliser : et ; pour obtenir une boîte multi-lignes, comme sur MindMap.

@startwbs
* <&flag> Debian
** <&globe> Ubuntu

***:Linux Mint
Open Source;

*** Kubuntu
*** ...
@endwbs

[Réf. QA-13945]

18.5 Masquer les bordures [_]
Vous pouvez enlever les contours des boîtes en utilisant le caractère tiret bas (_), comme pour les cartes
MindMap.

@startwbs
+ Project

Guide de référence du langage PlantUML (1.2025.0) 410 / 580

18.6 Colors (with inline or style color) 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

+ Part One
+ Task 1.1
- LeftTask 1.2
+ Task 1.3
+ Part Two
+ Task 2.1
+ Task 2.2
-_ Task 2.2.1 To the left boxless
-_ Task 2.2.2 To the Left boxless
+_ Task 2.2.3 To the right boxless

@endwbs

[Ref. QA-13297] [Ref. QA-13355]

18.6 Colors (with inline or style color)
It is possible to change node color:

• with inline color

@startwbs
*[#SkyBlue] this is the partner workpackage
**[#pink] this is my workpackage
** this is another workpackage
@endwbs

@startwbs
+[#SkyBlue] this is the partner workpackage
++[#pink] this is my workpackage
++ this is another workpackage
@endwbs

Guide de référence du langage PlantUML (1.2025.0) 411 / 580

18.6 Colors (with inline or style color) 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

[Ref. QA-12374, only from v1.2020.20]

• with style color

@startwbs
<style>
wbsDiagram {

.pink {
BackgroundColor pink

}
.your_style_name {

BackgroundColor SkyBlue
}

}
</style>
* this is the partner workpackage <<your_style_name>>
** this is my workpackage <<pink>>
**:This is on multiple
lines; <<pink>>
** this is another workpackage
@endwbs

@startwbs
<style>
wbsDiagram {

.pink {
BackgroundColor pink

}
.your_style_name {

BackgroundColor SkyBlue
}

}
</style>
+ this is the partner workpackage <<your_style_name>>
++ this is my workpackage <<pink>>
++:This is on multiple
lines; <<pink>>
++ this is another workpackage
@endwbs

Guide de référence du langage PlantUML (1.2025.0) 412 / 580

18.7 Using style 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

18.7 Using style
It is possible to change diagram style.

@startwbs
<style>
wbsDiagram {

// all lines (meaning connector and borders, there are no other lines in WBS) are black by default
Linecolor black
arrow {
// note that connector are actually "arrow" even if they don't look like as arrow
// This is to be consistent with other UML diagrams. Not 100% sure that it's a good idea
// So now connector are green
LineColor green

}
:depth(0) {

// will target root node
BackgroundColor White
RoundCorner 10
LineColor red
// Because we are targetting depth(0) for everything, border and connector for level 0 will be red

}
arrow {
:depth(2) {
// Targetting only connector between Mexico-Chihuahua and USA-Texas
LineColor blue
LineStyle 4
LineThickness .5

}
}
node {
:depth(2) {
LineStyle 2
LineThickness 2.5

}
}
boxless {
// will target boxless node with '_'
FontColor darkgreen

}
}
</style>
* World
** America
*** Canada
*** Mexico
**** Chihuahua
*** USA
**** Texas
***< New York

Guide de référence du langage PlantUML (1.2025.0) 413 / 580

18.8 Word Wrap 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

** Europe
***_ England
***_ Germany
***_ Spain
@endwbs

18.8 Word Wrap
Using MaximumWidth setting you can control automatic word wrap. Unit used is pixel.

@startwbs

<style>
node {

Padding 12
Margin 3
HorizontalAlignment center
LineColor blue
LineThickness 3.0
BackgroundColor gold
RoundCorner 40
MaximumWidth 100

}

rootNode {
LineStyle 8.0;3.0
LineColor red
BackgroundColor white
LineThickness 1.0
RoundCorner 0
Shadowing 0.0

}

leafNode {
LineColor gold
RoundCorner 0
Padding 3

}

Guide de référence du langage PlantUML (1.2025.0) 414 / 580

18.9 Add arrows between WBS elements18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

arrow {
LineStyle 4
LineThickness 0.5
LineColor green

}
</style>

* Hi =)
** sometimes i have node in wich i want to write a long text
*** this results in really huge diagram
**** of course, i can explicit split with a\nnew line
**** but it could be cool if PlantUML was able to split long lines, maybe with an option who specify the maximum width of a node

@endwbs

18.9 Add arrows between WBS elements
You can add arrows between WBS elements.

Using alias with as:

@startwbs
<style>
.foo {

LineColor #00FF00;
}
</style>
* Test
** A topic
*** "common" as c1
*** "common2" as c2
** "Another topic" as t2
t2 -> c1 <<foo>>
t2 ..> c2 #blue
@endwbs

Guide de référence du langage PlantUML (1.2025.0) 415 / 580

18.10 Creole on WBS diagram 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

Using alias in parentheses:

@startwbs
* Test
**(b) A topic
***(c1) common
**(t2) Another topic
t2 --> c1
b -> t2 #blue
@endwbs

[Ref. QA-16251]

18.10 Creole on WBS diagram
You can use Creole or HTML Creole on WBS:

@startwbs
* Creole on WBS
**:==Creole

This is **bold**
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~

--test Unicode and icons--
This is <U+221E> long
This is a <&code> icon
Use image : <img:https://plantuml.com/logo3.png>

;
**: HTML Creole

This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>

Guide de référence du langage PlantUML (1.2025.0) 416 / 580

18.10 Creole on WBS diagram 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>

-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>Orange background</back>
This is <size:20>big</size>

;
**:==Creole line
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
Or dotted title
//and title... //
==Title==
Or double-line title
--Another title--
Or single-line title
Enjoy!;
**:==Creole list item
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
;
@endwbs

Guide de référence du langage PlantUML (1.2025.0) 417 / 580

18.10 Creole on WBS diagram 18 STRUCTURE DE RÉPARTITION DU TRAVAIL (WBS)

Guide de référence du langage PlantUML (1.2025.0) 418 / 580

19 MATHÉMATIQUES

19 Mathématiques
Dans PlantUML, vous pouvez utiliser :

• les notations AsciiMath :

@startuml
:$int_0^1f(x)dx$;
:$x^2+y_1+z_12^34$;
note right
Try also
$d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h$
$P(y|bb"x") or f(bb"x")+epsilon$
end note
@enduml

• les notations JLaTeXMath :

@startuml
:<latex>\int_0^1f(x)dx</latex>;
:<latex>x^2+y_1+z_{12}^{34}</latex>;
note right
Try also
<latex>\dfrac{d}{dx}f(x)=\lim\limits_{h \to 0}\dfrac{f(x+h)-f(x)}{h}</latex>
<latex>P(y|\mathbf{x}) \mbox{ or } f(\mathbf{x})+\epsilon</latex>
end note
@enduml

Autre exemple :

@startuml
Bob -> Alice : Peux-tu résoudre: $ax^2+bx+c=0$
Alice --> Bob: $x = (-b+-sqrt(b^2-4ac))/(2a)$
@enduml

Guide de référence du langage PlantUML (1.2025.0) 419 / 580

19.1 Diagramme indépendant 19 MATHÉMATIQUES

19.1 Diagramme indépendant
Il est possible d’utiliser @startmath/@endmath pour créer des formules AsciiMath.

@startmath
f(t)=(a_0)/2 + sum_(n=1)^ooa_ncos((npit)/L)+sum_(n=1)^oo b_n\ sin((npit)/L)
@endmath

Ou bien utiliser @startlatex/@endlatex pour créer des formules JLaTeXMath.

@startlatex
\sum_{i=0}^{n-1} (a_i + b_i^2)
@endlatex

19.2 Comment cela fonctionne ?
Pour dessiner ces formules, PlantUML utilise deux projets OpenSource:

• AsciiMath qui convertit la notation AsciiMath vers une expression LaTeX.

• JLatexMath qui dessine une formule mathématique écrite en LaTeX. JLaTeXMath est le meilleur
projet Java pour dessiner du code LaTeX.

ASCIIMathTeXImg.js est suffisamment petit pour être intégré dans la distribution standard de Plan-
tUML.

Comme JLatexMath est plus gros, vous devez le télécharger séparément, puis extraire les 4 fichiers (batik-
all-1.7.jar, jlatexmath-minimal-1.0.3.jar, jlm_cyrillic.jar et jlm_greek.jar) dans le même répertoire que
PlantUML.jar.

Guide de référence du langage PlantUML (1.2025.0) 420 / 580

20 INFORMATION ENGINEERING DIAGRAMS

20 Information Engineering Diagrams
Information Engineering diagrams are an extension to the existing Class Diagrams.

This extension adds:

• Additional relations for the Information Engineering notation;

• An entity alias that maps to the class diagram class;

• An additional visibility modifier * to identify mandatory attributes.

Otherwise, the syntax for drawing diagrams is the same as for class diagrams. All other features of class
diagrams are also supported.

See also Chen Entity Relationship Diagrams.

[Ref. GH-31]

20.1 Information Engineering Relations
Type Symbol
Zero or One |o--
Exactly One ||--
Zero or Many }o--
One or Many }|--

Examples:

@startuml
Entity01 }|..|| Entity02
Entity03 }o..o| Entity04
Entity05 ||--o{ Entity06
Entity07 |o--|| Entity08
@enduml

20.2 Entities
@startuml
entity Entity01 {

* identifying_attribute
--
* mandatory_attribute
optional_attribute

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 421 / 580

20.3 Complete Example 20 INFORMATION ENGINEERING DIAGRAMS

Again, this is the normal class diagram syntax (aside from use of entity instead of class). Anything
that you can do in a class diagram can be done here.

The * visibility modifier can be used to identify mandatory attributes. A space can be used after the
modifier character to avoid conflicts with the creole bold:

@startuml
entity Entity01 {

optional attribute
optional bold attribute
* **mandatory bold attribute**

}
@enduml

20.3 Complete Example
@startuml

' hide the spot
' hide circle

' avoid problems with angled crows feet
skinparam linetype ortho

entity "User" as e01 {
*user_id : number <<generated>>
--
*name : text
description : text

}

entity "Card" as e02 {
*card_id : number <<generated>>
sync_enabled: boolean
version: number
last_sync_version: number
--
*user_id : number <<FK>>
other_details : text

}

entity "CardHistory" as e05 {
*card_history_id : number <<generated>>
version : number
--
*card_id : number <<FK>>
other_details : text

}

entity "CardsAccounts" as e04 {
*id : number <<generated>>
--
card_id : number <<FK>>

Guide de référence du langage PlantUML (1.2025.0) 422 / 580

20.3 Complete Example 20 INFORMATION ENGINEERING DIAGRAMS

account_id : number <<FK>>
other_details : text

}

entity "Account" as e03 {
*account_id : number <<generated>>
--
user_id : number <<FK>>
other_details : text

}

entity "Stream" as e06 {
*id : number <<generated>>
version: number
searchingText: string
--
owner_id : number <<FK>>
follower_id : number <<FK>>
card_id: number <<FK>>
other_details : text

}

e01 }|..|| e02
e01 }|..|| e03

e02 }|..|| e05

e02 }|..|| e04
e03 }|..|| e04

e02 }|..|| e06
e03 }|..|| e06

@enduml

Guide de référence du langage PlantUML (1.2025.0) 423 / 580

20.3 Complete Example 20 INFORMATION ENGINEERING DIAGRAMS

Currently the crows feet do not look very good when the relationship is drawn at an angle to the entity.
This can be avoided by using the linetype ortho skinparam.

Guide de référence du langage PlantUML (1.2025.0) 424 / 580

21 COMMANDES COMMUNES DANS PLANTUML

21 Commandes communes dans PlantUML
Découvrez les commandes fondamentales universellement applicables à tous les types de diagrammes dans
PlantUML. Ces commandes vous permettent d’injecter de la polyvalence et des détails personnalisés dans
vos diagrammes. Ci-dessous, nous répartissons ces commandes communes en trois catégories principales
:

21.0.1 Global Elements

• Comments : Ajoutez des remarques ou des notes explicatives dans le script de votre diagramme
pour transmettre des informations supplémentaires ou pour laisser des rappels en vue de modifica-
tions ultérieures.

• Notes : Incorporez des informations supplémentaires directement dans votre diagramme pour
faciliter la compréhension ou pour mettre en évidence des aspects importants.

• Size Control (Contrôle de la taille) : Ajustez les dimensions des différents éléments en fonction
de vos préférences, afin d’obtenir un diagramme équilibré et bien proportionné.

• Titre et légendes : Définissez un titre approprié et ajoutez des légendes pour clarifier le contexte
ou pour annoter des parties spécifiques de votre diagramme.

21.0.2 Description de la syntaxe créole

Exploitez la puissance de la syntaxe créole pour formater davantage le contenu de n’importe quel élément
de votre diagramme. Ce style de balisage wiki permet :

• Formatage du texte : Personnalisez l’apparence de votre texte avec différents styles et aligne-
ments.

• Listes : Créez des listes ordonnées ou non ordonnées pour présenter les informations de manière
claire.

• Liens : Intégrez des hyperliens pour faciliter la navigation rapide vers les ressources pertinentes.

21.0.3 Commande de contrôle du style

Contrôlez entièrement le style de présentation de vos éléments de diagramme à l’aide de la commande
style. Utilisez-la pour :

• Définir des styles : Définir des styles uniformes pour les éléments afin de maintenir un thème
visuel cohérent.

• Personnaliser les couleurs : Choisir des couleurs spécifiques pour divers éléments afin d’améliorer
l’attrait visuel et de créer des classifications distinctes.

Explorez ces commandes pour créer des diagrammes à la fois fonctionnels et esthétiques, en adaptant
chaque élément à vos spécifications exactes.

21.1 Comments
21.1.1 Simple comment

Everything that starts with simple quote ' is a comment.

@startuml
'Line comments use a single apostrophe
@enduml

21.1.2 Block comment

Block comment use C-style comments except that instead of * you use an apostrophe ', then you can
also put comments on several lines using /' to start and '/ to end.

Guide de référence du langage PlantUML (1.2025.0) 425 / 580

21.2 Zoom 21 COMMANDES COMMUNES DANS PLANTUML

@startuml
/'
many lines comments
here
'/
@enduml

[Ref. QA-1353]

Then you can also put block comment on the same line, as:

@startuml
/' case 1 '/ A -> B : AB-First step

B -> C : BC-Second step
/' case 2 '/ D -> E : DE-Third step
@enduml

[Ref. QA-3906 and QA-3910]

21.1.3 Full example

@startuml
skinparam activity {

' this is a comment
BackgroundColor White
BorderColor Black /' this is a comment '/
BorderColor Red ' this is not a comment and this line is ignored

}

start
:foo1;
@enduml

[Ref. GH-214]

21.2 Zoom
You can use the scale command to zoom the generated image.

You can use either a number or a fraction to define the scale factor. You can also specify either width
or height (in pixel). And you can also give both width and height: the image is scaled to fit inside the
specified dimension.

• scale 1.5

• scale 2/3

• scale 200 width

Guide de référence du langage PlantUML (1.2025.0) 426 / 580

21.3 Title 21 COMMANDES COMMUNES DANS PLANTUML

• scale 200 height

• scale 200*100

• scale max 300*200

• scale max 1024 width

• scale max 800 height

@startuml
scale 180*90
Bob->Alice : hello
@enduml

21.3 Title
The title keywords is used to put a title. You can add newline using \n in the title description.

Some skinparam settings are available to put borders on the title.

@startuml
skinparam titleBorderRoundCorner 15
skinparam titleBorderThickness 2
skinparam titleBorderColor red
skinparam titleBackgroundColor Aqua-CadetBlue

title Simple communication\nexample

Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

@enduml

You can use creole formatting in the title.

You can also define title on several lines using title and end title keywords.

@startuml

title
<u>Simple</u> communication example
on <i>several</i> lines and using <back:cadetblue>creole tags</back>

end title

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

Guide de référence du langage PlantUML (1.2025.0) 427 / 580

21.4 Caption 21 COMMANDES COMMUNES DANS PLANTUML

@enduml

21.4 Caption
There is also a caption keyword to put a caption under the diagram.

@startuml

caption figure 1
Alice -> Bob: Hello

@enduml

21.5 Footer and header
You can use the commands header or footer to add a footer or a header on any generated diagram.

You can optionally specify if you want a center, left or right footer/header, by adding a keyword.

As with title, it is possible to define a header or a footer on several lines.

It is also possible to put some HTML into the header or footer.

@startuml
Alice -> Bob: Authentication Request

header
Warning:
Do not use in production.
endheader

center footer Generated for demonstration

@enduml

Guide de référence du langage PlantUML (1.2025.0) 428 / 580

21.6 Legend the diagram 21 COMMANDES COMMUNES DANS PLANTUML

21.6 Legend the diagram
The legend and end legend are keywords is used to put a legend.

You can optionally specify to have left, right, top, bottom or center alignment for the legend.

@startuml
Alice -> Bob : Hello
legend right

Short
legend

endlegend
@enduml

@startuml
Alice -> Bob : Hello
legend top left

Short
legend

endlegend
@enduml

21.7 Appendix: Examples on all diagram
21.7.1 Activity

@startuml
header some header

footer some footer

Guide de référence du langage PlantUML (1.2025.0) 429 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

title My title

caption This is caption

legend
The legend
end legend

start
:Hello world;
:This is defined on
several **lines**;
stop

@enduml

21.7.2 Archimate

@startuml
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange

@enduml

Guide de référence du langage PlantUML (1.2025.0) 430 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

21.7.3 Class

@startuml
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

a -- b

@enduml

21.7.4 Component, Deployment, Use-Case

@startuml
header some header

footer some footer

Guide de référence du langage PlantUML (1.2025.0) 431 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

title My title

caption This is caption

legend
The legend
end legend

node n
(u) -> [c]

@enduml

21.7.5 Gantt project planning

@startgantt
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

[t] lasts 5 days

@endgantt

TODO: DONE [(Header, footer) corrected on V1.2020.18]

21.7.6 Object

@startuml

Guide de référence du langage PlantUML (1.2025.0) 432 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

object user {
name = "Dummy"
id = 123

}

@enduml

21.7.7 MindMap

@startmindmap
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

* r
** d1
** d2

@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 433 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

21.7.8 Network (nwdiag)

@startuml
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

nwdiag {
network inet {

web01 [shape = cloud]
}

}

@enduml

21.7.9 Sequence

@startuml
header some header

footer some footer

Guide de référence du langage PlantUML (1.2025.0) 434 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

title My title

caption This is caption

legend
The legend
end legend

a->b
@enduml

21.7.10 State

@startuml
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

[*] --> State1
State1 -> State2

@enduml

Guide de référence du langage PlantUML (1.2025.0) 435 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

21.7.11 Timing

@startuml
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU is Waiting
WB is Processing

@300
WB is Waiting

@enduml

21.7.12 Work Breakdown Structure (WBS)

@startwbs
header some header

footer some footer

title My title

caption This is caption

legend

Guide de référence du langage PlantUML (1.2025.0) 436 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

The legend
end legend

* r
** d1
** d2

@endwbs

TODO: DONE [Corrected on V1.2020.17]

21.7.13 Wireframe (SALT)

@startsalt
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

{+
Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 437 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

TODO: DONE [Corrected on V1.2020.18]

21.8 Appendix: Examples on all diagram with style
TODO: DONE

FYI:

• all is only good for Sequence diagram

• title, caption and legend are good for all diagrams except for salt diagram

TODO: FIXME �

• Now (test on 1.2020.18-19) header, footer are not good for all other diagrams except only for
Sequence diagram.

To be fix; Thanks

TODO: FIXME

Here are tests of title, header, footer, caption or legend on all the diagram with the debug style:

<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>

21.8.1 Activity

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

Guide de référence du langage PlantUML (1.2025.0) 438 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

start
:Hello world;
:This is defined on
several **lines**;
stop

@enduml

Guide de référence du langage PlantUML (1.2025.0) 439 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

21.8.2 Archimate

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

Guide de référence du langage PlantUML (1.2025.0) 440 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange

@enduml

21.8.3 Class

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24

Guide de référence du langage PlantUML (1.2025.0) 441 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

FontColor blue
}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

a -- b

@enduml

Guide de référence du langage PlantUML (1.2025.0) 442 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

21.8.4 Component, Deployment, Use-Case

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

Guide de référence du langage PlantUML (1.2025.0) 443 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

node n
(u) -> [c]

@enduml

21.8.5 Gantt project planning

@startgantt
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

Guide de référence du langage PlantUML (1.2025.0) 444 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

[t] lasts 5 days

@endgantt

Guide de référence du langage PlantUML (1.2025.0) 445 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

21.8.6 Object

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

object user {
name = "Dummy"
id = 123

}

@enduml

Guide de référence du langage PlantUML (1.2025.0) 446 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

21.8.7 MindMap

@startmindmap
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

Guide de référence du langage PlantUML (1.2025.0) 447 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

footer some footer

title My title

caption This is caption

legend
The legend
end legend

* r
** d1
** d2

@endmindmap

21.8.8 Network (nwdiag)

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

Guide de référence du langage PlantUML (1.2025.0) 448 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

nwdiag {
network inet {

web01 [shape = cloud]
}

}

@enduml

Guide de référence du langage PlantUML (1.2025.0) 449 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

21.8.9 Sequence

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>

Guide de référence du langage PlantUML (1.2025.0) 450 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

a->b
@enduml

21.8.10 State

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28

Guide de référence du langage PlantUML (1.2025.0) 451 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

FontColor red
}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

[*] --> State1
State1 -> State2

@enduml

Guide de référence du langage PlantUML (1.2025.0) 452 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

21.8.11 Timing

@startuml
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU is Waiting
WB is Processing

@300
WB is Waiting

Guide de référence du langage PlantUML (1.2025.0) 453 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

@enduml

21.8.12 Work Breakdown Structure (WBS)

@startwbs
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

Guide de référence du langage PlantUML (1.2025.0) 454 / 580

21.8 Appendix: Examples on all diagram with style21 COMMANDES COMMUNES DANS PLANTUML

caption {
FontSize 32

}
</style>
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

* r
** d1
** d2

@endwbs

21.8.13 Wireframe (SALT)

TODO: FIXME Fix all (title, caption, legend, header, footer) for salt. TODO: FIXME

@startsalt
<style>
title {

HorizontalAlignment right
FontSize 24
FontColor blue

}

Guide de référence du langage PlantUML (1.2025.0) 455 / 580

21.9 Mainframe 21 COMMANDES COMMUNES DANS PLANTUML

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

}

caption {
FontSize 32

}
</style>
@startsalt
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

{+
Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

21.9 Mainframe
@startuml
mainframe This is a **mainframe**

Guide de référence du langage PlantUML (1.2025.0) 456 / 580

21.10 Appendix: Examples of Mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

Alice->Bob : Hello
@enduml

[Ref. QA-4019 and Issue#148]

21.10 Appendix: Examples of Mainframe on all diagram
21.10.1 Activity

@startuml
mainframe This is a **mainframe**

start
:Hello world;
:This is defined on
several **lines**;
stop
@enduml

21.10.2 Archimate

@startuml
mainframe This is a **mainframe**

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>
rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange
@enduml

Guide de référence du langage PlantUML (1.2025.0) 457 / 580

21.10 Appendix: Examples of Mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

TODO: FIXME � Cropped on the top and on the left TODO: FIXME

21.10.3 Class

@startuml
mainframe This is a **mainframe**

a -- b
@enduml

TODO: FIXME � Cropped on the top and on the left TODO: FIXME

21.10.4 Component, Deployment, Use-Case

@startuml
mainframe This is a **mainframe**

node n
(u) -> [c]
@enduml

TODO: FIXME � Cropped on the top and on the left TODO: FIXME

21.10.5 Gantt project planning

@startgantt
mainframe This is a **mainframe**

[t] lasts 5 days
@endgantt

Guide de référence du langage PlantUML (1.2025.0) 458 / 580

21.10 Appendix: Examples of Mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

TODO: FIXME � Cropped on the top and on the left TODO: FIXME

21.10.6 Object

@startuml
mainframe This is a **mainframe**

object user {
name = "Dummy"
id = 123

}
@enduml

TODO: FIXME � Cropped on the top! TODO: FIXME

21.10.7 MindMap

@startmindmap
mainframe This is a **mainframe**

* r
** d1
** d2
@endmindmap

21.10.8 Network (nwdiag)

@startuml
mainframe This is a **mainframe**

nwdiag {
network inet {

web01 [shape = cloud]
}

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 459 / 580

21.10 Appendix: Examples of Mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

TODO: FIXME � Cropped on the top! TODO: FIXME

21.10.9 Sequence

@startuml
mainframe This is a **mainframe**

a->b
@enduml

21.10.10 State

@startuml
mainframe This is a **mainframe**

[*] --> State1
State1 -> State2
@enduml

TODO: FIXME � Cropped on the top and on the left TODO: FIXME

21.10.11 Timing

@startuml
mainframe This is a **mainframe**

robust "Web Browser" as WB
concise "Web User" as WU
@0
WU is Idle

Guide de référence du langage PlantUML (1.2025.0) 460 / 580

21.10 Appendix: Examples of Mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

WB is Idle
@100
WU is Waiting
WB is Processing
@300
WB is Waiting
@enduml

21.10.12 Work Breakdown Structure (WBS)

@startwbs
mainframe This is a **mainframe**
* r
** d1
** d2
@endwbs

21.10.13 Wireframe (SALT)

@startsalt
mainframe This is a **mainframe**
{+

Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 461 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

21.11 Appendix: Examples of title, header, footer, caption, legend and main-
frame on all diagram

21.11.1 Activity

@startuml
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

start
:Hello world;
:This is defined on
several **lines**;
stop

@enduml

21.11.2 Archimate

@startuml
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

Guide de référence du langage PlantUML (1.2025.0) 462 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

legend
The legend
end legend

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange

@enduml

21.11.3 Class

@startuml
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

a -- b

@enduml

Guide de référence du langage PlantUML (1.2025.0) 463 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

21.11.4 Component, Deployment, Use-Case

@startuml
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

node n
(u) -> [c]

@enduml

21.11.5 Gantt project planning

@startgantt
mainframe This is a **mainframe**
header some header

Guide de référence du langage PlantUML (1.2025.0) 464 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

footer some footer

title My title

caption This is caption

legend
The legend
end legend

[t] lasts 5 days

@endgantt

21.11.6 Object

@startuml
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

object user {
name = "Dummy"
id = 123

}

@enduml

Guide de référence du langage PlantUML (1.2025.0) 465 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

21.11.7 MindMap

@startmindmap
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

* r
** d1
** d2

@endmindmap

21.11.8 Network (nwdiag)

@startuml
mainframe This is a **mainframe**
header some header

Guide de référence du langage PlantUML (1.2025.0) 466 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

footer some footer

title My title

caption This is caption

legend
The legend
end legend

nwdiag {
network inet {

web01 [shape = cloud]
}

}

@enduml

21.11.9 Sequence

@startuml
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

a->b
@enduml

Guide de référence du langage PlantUML (1.2025.0) 467 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

21.11.10 State

@startuml
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

[*] --> State1
State1 -> State2

@enduml

21.11.11 Timing

@startuml
mainframe This is a **mainframe**

Guide de référence du langage PlantUML (1.2025.0) 468 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU is Waiting
WB is Processing

@300
WB is Waiting

@enduml

21.11.12 Work Breakdown Structure (WBS)

@startwbs
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

Guide de référence du langage PlantUML (1.2025.0) 469 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

legend
The legend
end legend

* r
** d1
** d2

@endwbs

21.11.13 Wireframe (SALT)

@startsalt
mainframe This is a **mainframe**
header some header

footer some footer

title My title

caption This is caption

legend
The legend
end legend

{+
Login | "MyName "
Password | "**** "
[Cancel] | [OK]

}
@endsalt

Guide de référence du langage PlantUML (1.2025.0) 470 / 580

21.11 Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram21 COMMANDES COMMUNES DANS PLANTUML

Guide de référence du langage PlantUML (1.2025.0) 471 / 580

22 CRÉOLE

22 Créole
Le créole est un langage de balisage léger commun à divers wikis. Un moteur créole léger est intégré à
PlantUML afin de disposer d’un moyen normalisé d’émettre du texte stylé.

Tous les diagrammes prennent en charge cette syntaxe.

Notez que la compatibilité avec la syntaxe HTML est préservée.

22.1 Texte mis en évidence
@startuml
Alice -> Bob : hello --there-- here
... Some ~~long delay~~ ...
Bob -> Alice : ok
note left

This is **bold**
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~

end note
@enduml

22.2 Listes
Vous pouvez utiliser des listes numérotées et à puces dans le texte des nœuds, les notes, etc.

TODO: FIXME � Vous ne pouvez pas tout à fait mélanger les chiffres et les puces dans une liste et sa
sous-liste

@startuml
object demo {

* Bullet list
* Second item

}
note left

* Bullet list
* Second item
** Sub item

end note

legend
Numbered list
Second item

Guide de référence du langage PlantUML (1.2025.0) 472 / 580

22.3 Caractère d’échappement 22 CRÉOLE

Sub item
Another sub item

* Can't quite mix
* Numbers and bullets

Third item
end legend
@enduml

22.3 Caractère d’échappement
Vous pouvez utiliser le tilde ~ pour échapper les caractères Créoles spéciaux.

@startuml
object demo {

This is not ~___underscored__.
This is not ~""monospaced"".

}
@enduml

22.4 Entêtes
@startuml
usecase UC1 as "
= Extra-large heading
Some text
== Large heading
Other text
=== Medium heading
Information
....
==== Small heading"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 473 / 580

22.5 Emoji 22 CRÉOLE

22.5 Emoji
All emojis from Twemoji (see EmojiTwo on Github) are available using the following syntax:

@startuml
Alice -> Bob : Hello <:1f600:>
return <:innocent:>
Alice -> Bob : Without color: <#0:sunglasses:>
Alice -> Bob : Change color: <#green:sunny:>
@enduml

Unlike Unicode Special characters that depend on installed fonts, the emoji are always available. Fur-
thermore, emoji are already colored, but you can recolor them if you like (see examples above).

One can pick emoji from the emoji cheat sheet, the Unicode full-emoji-list, or the flat list emoji.txt in
the plantuml source.

You can also use the following PlantUML command to list available emoji:

@startuml
emoji <block>
@enduml

As of 13 April 2023, you can select between 1174 emoji from the following Unicode blocks:

• Unicode block 26: 83 emoji

• Unicode block 27: 33 emoji

• Unicode block 1F3: 246 emoji

• Unicode block 1F4: 255 emoji

• Unicode block 1F5: 136 emoji

• Unicode block 1F6: 181 emoji

• Unicode block 1F9: 240 emoji

Guide de référence du langage PlantUML (1.2025.0) 474 / 580

22.6 Lignes horizontales 22 CRÉOLE

22.5.1 Unicode block 26

@startuml
emoji 26
@enduml

22.6 Lignes horizontales
@startuml
database DB1 as "
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
Enjoy!
"
note right

This is working also in notes
You can also add title in all these lines
==Title==
--Another title--

end note

@enduml

Guide de référence du langage PlantUML (1.2025.0) 475 / 580

22.7 Links 22 CRÉOLE

22.7 Links
You can also use URL and links.

Simple links are define using two square brackets (or three square brackets for field or method on class
diagram).

Example:

• [[http://plantuml.com]]

• [[http://plantuml.com This label is printed]]

• [[http://plantuml.com{Optional tooltip} This label is printed]]

URL can also be authenticated.

22.8 Code
Vous pouvez utiliser <code> pour afficher du code de programmation dans votre diagramme (désolé, la
coloration syntaxique n’est pas encore supportée)

@startuml
Alice -> Bob : hello
note right
<code>
main() {

printf("Hello world");
}
</code>
end note
@enduml

C’est particulièrement utile pour illustrer un code PlantUML et le rendu qui en résulte

@startuml
Alice -> Bob : hello
note left
<code>

This is **bold**
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__

Guide de référence du langage PlantUML (1.2025.0) 476 / 580

22.9 Tableau 22 CRÉOLE

This is ~~wave-underlined~~
--test Unicode and icons--
This is <U+221E> long
This is a <&code> icon

</code>
end note
note right
This is **bold**
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~
--test Unicode and icons--
This is <U+221E> long
This is a <&code> icon

end note
@enduml

22.9 Tableau
22.9.1 Créer un tableau

Il est possible de construire un tableau, avec le séparateur |

@startuml
skinparam titleFontSize 14
title

Example of simple table
=	= table	= header
a	table	row
b	table	row

end title
[*] --> State1
@enduml

Guide de référence du langage PlantUML (1.2025.0) 477 / 580

22.9 Tableau 22 CRÉOLE

22.9.2 Ajouter une couleur sur les lignes ou les cellules

Vous pouvez spécifier les couleurs de fond des lignes et des cellules

@startuml
start
:Here is the result
=	= table	= header
a	table	row
<#FF8080> red	<#80FF80> green	<#8080FF> blue
<#yellow>| b | table | row |;
@enduml

22.9.3 Ajouter une couleur sur la bordure et le texte

Vous pouvez également spécifier les couleurs du texte et des bordures

@startuml
title
<#lightblue,#red>|= Step |= Date |= Name |= Status |= Link |
<#lightgreen>| 1.1 | TBD | plantuml news |<#Navy><color:OrangeRed> Unknown | [[https://plantuml.com/news plantuml news]] |
end title
@enduml

[Réf. QA-7184]

22.9.4 Pas de bordure ou même couleur que le fond

Vous pouvez également définir la couleur de la bordure sur la même couleur que le fond

@startuml
node n
note right of n

<#FBFB77,#FBFB77>|= Husky / Yorkie |= Foo |
| SourceTree1 | foo1 |
| ST2 | foo2 |

Guide de référence du langage PlantUML (1.2025.0) 478 / 580

22.10 Arbre 22 CRÉOLE

end note
@enduml

[Réf. QA-12448]

22.9.5 En-tête en gras ou non

= comme premier caractère d’une cellule indique s’il faut la mettre en gras (généralement utilisé pour les
en-têtes) ou non

@startuml
note as deepCSS0

|<#white> Husky / Yorkie |
|=<#gainsboro> SourceTree0 |

endnote

note as deepCSS1
|= <#white> Husky / Yorkie |= Foo |
|<#gainsboro><r> SourceTree1 | foo1 |

endnote

note as deepCSS2
|= Husky / Yorkie |
|<#gainsboro> SourceTree2 |

endnote

note as deepCSS3
<#white>|= Husky / Yorkie |= Foo |
|<#gainsboro> SourceTree1 | foo1 |

endnote
@enduml

[Réf. QA-10923]

22.10 Arbre
Vous pouvez utiliser les caractères |_ pour construire un arbre.

Sur les commandes courantes, comme le titre

@startuml
skinparam titleFontSize 14
title

Example of Tree
|_ First line
|_ **Bom (Model)**
|_ prop1
|_ prop2

Guide de référence du langage PlantUML (1.2025.0) 479 / 580

22.10 Arbre 22 CRÉOLE

|_ prop3
|_ Last line

end title
[*] --> State1
@enduml

Sur un diagramme de classes.

(Veuillez noter que nous devons utiliser un deuxième compartiment vide, sinon les parenthèses dans
(Modèle) font que le texte est déplacé dans un premier compartiment séparé)

@startuml
class Foo {
Bar (Model)
|_ prop
|_ **Bom (Model)**

|_ prop2
|_ prop3
|_ prop3.1

_ prop4 :(
}
@enduml

[Réf. QA-3448]

Sur les diagrammes de composants ou de déploiement

@startuml
[A] as A
rectangle "Box B" {

component B [
Level 1
|_ Level 2a
|_ Level 3a
|_ Level 3b

Guide de référence du langage PlantUML (1.2025.0) 480 / 580

22.11 Caractères spéciaux 22 CRÉOLE

|_ Level 3c
|_ Level 4a

|_ Level 3d
|_ Level 2b
|_ Level 3e

]
}
A -> B
@enduml

[Réf. QA-11365]

22.11 Caractères spéciaux
Il est possible d’utiliser n’importe quel caractère unicode, soit directement soit avec la syntaxe &#XXX ou
<U+XXXX>

@startuml
usecase direct as "this is ∞ long"
usecase ampHash as "this is also ∞ long"
usecase angleBrackets as "this is also <U+221E> long"
@enduml

Please note that not all Unicode chars appear correctly, depending on what fonts are installed (on
your local system or the PlantUML server, depending on which one you use). For characters that
are emoji, it’s better to use the [Emoji](https://plantuml.com/creole#68305e25f5788db0) notation. See
[Issue 72](https://github.com/plantuml/plantuml/issues/72) for more details.

22.12 Tag HTML
Certains tag HTML sont encore fonctionnels:

• pour du texte en gras

• <u> ou <u:#AAAAAA> ou <u:[[color|colorName]]> pour souligner

• <i> pour de l’italique

• <s> ou <s:#AAAAAA> ou <s:[[color|colorName]]> pour barrer du texte

• <w> ou <w:#AAAAAA> ou <w:[[color|colorName]]> pour souligner en vague

Guide de référence du langage PlantUML (1.2025.0) 481 / 580

22.12 Tag HTML 22 CRÉOLE

• <color:#AAAAAA> ou <color:[[color|colorName]]> pour la couleur

• <back:#AAAAAA> ou <back:[[color|colorName]]> pour la couleur de fond

• <size:nn> pour changer la taille des caractères

• <img:file> : le fichier doit être accessible sur le système de fichier

• <img:http://plantuml.com/logo3.png> : l’URL doit être accessible

@startuml
:* You can change <color:red>text color</color>
* You can change <back:cadetblue>background color</back>
* You can change <size:18>size</size>
* You use <u>legacy</u> HTML <i>tag</i>
* You use <u:red>color</u> <s:green>in HTML</s> <w:#0000FF>tag</w>

* Use image : <img:http://plantuml.com/logo3.png>
;
@enduml

22.12.1 Common HTML element

@startuml
hide footbox
note over Source
<code>

This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>
This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>
-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>Orange background</back>
This is <size:20>big</size>

</code>
end note
/note over Output

This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>
This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>

Guide de référence du langage PlantUML (1.2025.0) 482 / 580

22.13 OpenIconic 22 CRÉOLE

-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>Orange background</back>
This is <size:20>big</size>

end note
@enduml

22.12.2 Subscript and Superscript element [sub, sup]

@startuml
:<code>
This is the "caffeine" molecule: C₈H₁₀N₄O₂
</code>
This is the "caffeine" molecule: C₈H₁₀N₄O₂

<code>
This is the Pythagorean theorem: a² + b² = c²
</code>
This is the Pythagorean theorem: a² + b² = c²;
@enduml

22.13 OpenIconic
OpenIconic est un jeu d’icônes open-source très agréable. Ces icônes sont intégrées dans l’analyseur
créole, vous pouvez donc les utiliser directement.

Utilisez la syntaxe suivante <&ICON_NAME>

@startuml
title: <size:20><&heart>Use of OpenIconic<&heart></size>
class Wifi
note left

Click on <&wifi>
end note
@enduml

Guide de référence du langage PlantUML (1.2025.0) 483 / 580

22.14 Annexe : Exemples de ” liste créole ” sur tous les diagrammes 22 CRÉOLE

La liste complète est disponible sur le site web d’OpenIconic, ou vous pouvez utiliser la commande spéciale
suivante pour les lister

@startuml
listopeniconic
@enduml

22.14 Annexe : Exemples de ” liste créole ” sur tous les diagrammes
22.14.1 Activité

@startuml
start
:**test list 1**
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item;
stop

Guide de référence du langage PlantUML (1.2025.0) 484 / 580

22.14 Annexe : Exemples de ” liste créole ” sur tous les diagrammes 22 CRÉOLE

@enduml

22.14.2 Classe

TODO: FIXME �

• Sous-élément

• Sous-élément

TODO: FIXME

@startuml

class a {
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
}

a -- b

@enduml

Guide de référence du langage PlantUML (1.2025.0) 485 / 580

22.14 Annexe : Exemples de ” liste créole ” sur tous les diagrammes 22 CRÉOLE

22.14.3 Composant, Déploiement, Cas d’utilisation

@startuml
node n [
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
]

file f as "
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 486 / 580

22.14 Annexe : Exemples de ” liste créole ” sur tous les diagrammes 22 CRÉOLE

TODO: DONE [Corrigé dans la V1.2020.18]

22.14.4 Planification de projet Gantt

N/A

22.14.5 Object

TODO: FIXME �

• Sous-élément

• Sous-élément

TODO: FIXME

@startuml
object user {
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
}

@enduml

Guide de référence du langage PlantUML (1.2025.0) 487 / 580

22.14 Annexe : Exemples de ” liste créole ” sur tous les diagrammes 22 CRÉOLE

22.14.6 MindMap

@startmindmap

* root
** d1
:test list 1**
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item;

@endmindmap

22.14.7 Réseau (nwdiag)

N/A

Guide de référence du langage PlantUML (1.2025.0) 488 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles ” sur tous les diagrammes 22 CRÉOLE

22.14.8 Note

@startuml
note as n
test list 1
* Bullet list
* Second item
** Sub item
*** Sub sub item
* Third item

test list 2
Numbered list
Second item
Sub item
Another sub item
Third item
end note
@enduml

22.14.9 Sequence

N/A (ou sur note ou commandes communes)

22.14.10 State

N/A (ou sur note ou commandes communes)

22.15 Annexe : Exemples de ” lignes horizontales créoles ” sur tous les dia-
grammes

22.15.1 Activité

TODO: FIXME � ligne forte ____ TODO: FIXME

@startuml
start
:You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
Or dotted title
//and title... //
==Title==

Guide de référence du langage PlantUML (1.2025.0) 489 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles ” sur tous les diagrammes 22 CRÉOLE

Or double-line title
--Another title--
Or single-line title
Enjoy!;
stop
@enduml

22.15.2 Classe

@startuml

class a {
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
Or dotted title
//and title... //
==Title==
Or double-line title
--Another title--
Or single-line title
Enjoy!
}

a -- b

@enduml

Guide de référence du langage PlantUML (1.2025.0) 490 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles ” sur tous les diagrammes 22 CRÉOLE

22.15.3 Composant, déploiement, cas d’utilisation

@startuml
node n [
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title--
Enjoy!
]

file f as "
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title--
Enjoy!
"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 491 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles ” sur tous les diagrammes 22 CRÉOLE

22.15.4 Planification de projet Gantt

N/A

22.15.5 Objet

@startuml
object user {
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title--
Enjoy!
}

@enduml

TODO: DONE [Corrected on V1.2020.18]

22.15.6 MindMap

TODO: FIXME � strong line ____ TODO: FIXME

@startmindmap

* root

Guide de référence du langage PlantUML (1.2025.0) 492 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles ” sur tous les diagrammes 22 CRÉOLE

** d1
**:You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title--
Enjoy!;

@endmindmap

22.15.7 Réseau (nwdiag)

N/A

22.15.8 Note

@startuml
note as n
You can have horizontal line

Or double line
====
Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title--
Enjoy!
end note
@enduml

Guide de référence du langage PlantUML (1.2025.0) 493 / 580

22.16 Équivalence de style (entre le créole et le HTML) 22 CRÉOLE

22.15.9 Sequence

N/A (ou sur note ou commandes communes)

22.15.10 State

N/A (ou sur note ou commandes communes)

22.16 Équivalence de style (entre le créole et le HTML)
Style Créole Legacy HTML comme
gras C’est **bold** C’est bold
italique C’est //italics// C’est <i>italics</i>
monospaced C’est ""monospaced"" C’est <font:monospaced>monospaced
stroked C’est --stroked-- C’est <s>stroked</s>
souligné C’est __underlined__ C’est <u>underlined</u>
agité C’est ~~~ C’est <w>waved</w>

@startmindmap
* Style equivalent\n(between Creole and HTML)
:Creole**

<#silver>|= code|= output|
\n This is ""~**bold**""\n	\n This is **bold**
\n This is ""~//italics//""\n	\n This is //italics//
\n This is ""~""monospaced~"" ""\n	\n This is ""monospaced""
\n This is ""~--stroked--""\n	\n This is --stroked--
\n This is ""~__underlined__""\n	\n This is __underlined__
\n This is ""<U+007E><U+007E>waved<U+007E><U+007E>""\n	\n This is ~~waved~~
**:Legacy HTML like

<#silver>|= code|= output|
\n This is ""~bold""\n	\n This is bold
\n This is ""~<i>italics</i>""\n	\n This is <i>italics</i>
\n This is ""~<font:monospaced>monospaced""\n	\n This is <font:monospaced>monospaced
\n This is ""~<s>stroked</s>""\n	\n This is <s>stroked</s>
\n This is ""~<u>underlined</u>""\n	\n This is <u>underlined</u>
\n This is ""~<w>waved</w>""\n	\n This is <w>waved</w>

And color as a bonus...
<#silver>|= code|= output|
| \n This is ""~<s:""<color:green>""green""</color>"">stroked</s>""\n | \n This is <s:green>stroked</s> |
| \n This is ""~<u:""<color:red>""red""</color>"">underlined</u>""\n | \n This is <u:red>underlined</u> |
| \n This is ""~<w:""<color:#0000FF>""#0000FF""</color>"">waved</w>""\n | \n This is <w:#0000FF>waved</w> |;
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 494 / 580

22.16 Équivalence de style (entre le créole et le HTML) 22 CRÉOLE

Guide de référence du langage PlantUML (1.2025.0) 495 / 580

23 DEFINING AND USING SPRITES

23 Defining and using sprites
A Sprite is a small graphic element that can be used in diagrams.

In PlantUML, sprites are monochrome and can have either 4, 8 or 16 gray level.

To define a sprite, you have to use a hexadecimal digit between 0 and F per pixel.

Then you can use the sprite using <$XXX> where XXX is the name of the sprite.

@startuml
sprite $foo1 {

FFFFFFFFFFFFFFF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
FFFFFFFFFFFFFFF

}
Alice -> Bob : Testing <$foo1>
@enduml

You can scale the sprite.

@startuml
sprite $foo1 {

FFFFFFFFFFFFFFF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
FFFFFFFFFFFFFFF

}
Alice -> Bob : Testing <$foo1{scale=3}>
@enduml

23.1 Inline SVG sprite
You can also use inlined SVG for sprites.

Guide de référence du langage PlantUML (1.2025.0) 496 / 580

23.1 Inline SVG sprite 23 DEFINING AND USING SPRITES

Only a tiny subset of SVG directives is possible, so you probably have to compress existing SVG files
using https://vecta.io/nano. [Ref. GH-1066]

@startuml
sprite foo1 <svg width="8" height="8" viewBox="0 0 8 8">
<path d="M1 0l-1 1 1.5 1.5-1.5 1.5h4v-4l-1.5 1.5-1.5-1.5zm3 4v4l1.5-1.5 1.5 1.5 1-1-1.5-1.5 1.5-1.5h-4z" />
</svg>

Alice->Bob : <$foo1*3>
@enduml

Another example:

@startuml
sprite foo1 <svg viewBox="0 0 36 36">
<path fill="#77B255" d="M36 32c0 2.209-1.791 4-4 4H4c-2.209 0-4-1.791-4-4V4c0-2.209 1.791-4 4-4h28c2.209 0 4 1.791 4 4v28z"/>
<path fill="#FFF" d="M21.529 18.006l8.238-8.238c.977-.976.977-2.559 0-3.535-.977-.977-2.559-.977-3.535 0l-8.238 8.238-8.238-8.238c-.976-.977-2.56-.977-3.535 0-.977.976-.977 2.559 0 3.535l8.238 8.238-8.258 8.258c-.977.977-.977 2.559 0 3.535.488.488 1.128.732 1.768.732s1.28-.244 1.768-.732l8.258-8.259 8.238 8.238c.488.488 1.128.732 1.768.732s1.279-.244 1.768-.732c.977-.977.977-2.559 0-3.535l-8.24-8.237z"/>
</svg>

Alice->Bob : <$foo1>

@enduml

You can also use rotation:

@startuml
sprite react <svg viewBox="0 0 230 230">
<circle cx="115" cy="115" r="20.5" fill="#61dafb"/>
<ellipse rx="110" ry="42" cx="115" cy="115" stroke="#61dafb" stroke-width="10" fill="none"/>
<ellipse rx="110" ry="42" cx="115" cy="115" stroke="#61dafb" stroke-width="10" fill="none" transform="rotate(60 115 115)"/>
<ellipse rx="110" ry="42" cx="115" cy="115" stroke="#61dafb" stroke-width="10" fill="none" transform="rotate(120 115 115)"/>
</svg>

rectangle <$react{scale=0.2}>
@enduml

And you can use color:

@startuml
sprite react <svg viewBox="0 0 230 230">
<circle cx="115" cy="102" r="20.5" fill="#61dafb"/>

Guide de référence du langage PlantUML (1.2025.0) 497 / 580

23.2 Changing colors 23 DEFINING AND USING SPRITES

<ellipse rx="110" ry="42" cx="115" cy="102" stroke="#ff0000" stroke-width="10" fill="none"/>
<g transform="rotate(100 115 102)">
<ellipse rx="110" ry="42" cx="115" cy="102" stroke="#00ff00" stroke-width="10" fill="none"/>
</g>
<g transform="rotate(-100 115 102)">
<ellipse rx="110" ry="42" cx="115" cy="102" stroke="#0000ff" stroke-width="10" fill="none"/>
</g>
</svg>

rectangle <$react{scale=1}>
@enduml

23.2 Changing colors
Although sprites are monochrome, it’s possible to change their color.

@startuml
sprite $foo1 {

FFFFFFFFFFFFFFF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
FFFFFFFFFFFFFFF

}
Alice -> Bob : Testing <$foo1,scale=3.4,color=orange>
@enduml

23.3 Encoding Sprite
To encode sprite, you can use the command line like:

java -jar plantuml.jar -encodesprite 16z foo.png

Guide de référence du langage PlantUML (1.2025.0) 498 / 580

23.4 Importing Sprite 23 DEFINING AND USING SPRITES

where foo.png is the image file you want to use (it will be converted to gray automatically).

After -encodesprite, you have to specify a format: 4, 8, 16, 4z, 8z or 16z.

The number indicates the gray level and the optional z is used to enable compression in sprite definition.

23.4 Importing Sprite
You can also launch the GUI to generate a sprite from an existing image.

Click in the menubar then on File/Open Sprite Window.

After copying an image into you clipboard, several possible definitions of the corresponding sprite will be
displayed : you will just have to pickup the one you want.

23.5 Examples
@startuml
sprite $printer [15x15/8z] NOtH3W0W208HxFz_kMAhj7lHWpa1XC716sz0Pq4MVPEWfBHIuxP3L6kbTcizR8tAhzaqFvXwvFfPEqm0
start
:click on <$printer> to print the page;
@enduml

@startuml
sprite $bug [15x15/16z] PKzR2i0m2BFMi15p__FEjQEqB1z27aeqCqixa8S4OT7C53cKpsHpaYPDJY_12MHM-BLRyywPhrrlw3qumqNThmXgd1TOterAZmOW8sgiJafogofWRwtV3nCF
sprite $printer [15x15/8z] NOtH3W0W208HxFz_kMAhj7lHWpa1XC716sz0Pq4MVPEWfBHIuxP3L6kbTcizR8tAhzaqFvXwvFfPEqm0
sprite $disk {
444445566677881
436000000009991
43600000000ACA1
53700000001A7A1
53700000012B8A1
53800000123B8A1
63800001233C9A1
634999AABBC99B1
744566778899AB1
7456AAAAA99AAB1
8566AFC228AABB1
8567AC8118BBBB1
867BD4433BBBBB1
39AAAAABBBBBBC1

}

title Use of sprites (<$printer>, <$bug>...)

class Example {
Can have some bug : <$bug>
Click on <$disk> to save
}

note left : The printer <$printer> is available

@enduml

Guide de référence du langage PlantUML (1.2025.0) 499 / 580

23.6 StdLib 23 DEFINING AND USING SPRITES

23.6 StdLib
The PlantUML StdLib includes a number of ready icons in various IT areas such as architecture, cloud
services, logos etc. It including AWS, Azure, Kubernetes, C4, product Logos and many others. To explore
these libraries:

• Browse the Github folders of PlantUML StdLib

• Browse the source repos of StdLib collections that interest you. Eg if you are interested in logos
you can find that it came from gilbarbara-plantuml-sprites, and quickly find its

sprites-list. (The next section shows how to list selected sprites but unfortunately that’s in grayscale
whereas this custom listing is in color.)

• Study the in-depth Hitchhiker’s Guide to PlantUML, eg sections Standard Library Sprites and
PlantUML Stdlib Overview

23.7 Listing Sprites
You can use the listsprites command to show available sprites:

• Used on its own, it just shows ArchiMate sprites

• If you include some sprite libraries in your diagram, the command shows all these sprites, as
explained in View all the icons with listsprites.

(Example from Hitchhikers Guide to PlantUML)

@startuml
!define osaPuml https://raw.githubusercontent.com/Crashedmind/PlantUML-opensecurityarchitecture2-icons/master
!include osaPuml/Common.puml
!include osaPuml/User/all.puml
!include osaPuml/Hardware/all.puml
!include osaPuml/Misc/all.puml
!include osaPuml/Server/all.puml
!include osaPuml/Site/all.puml

listsprites

' From The Hitchhiker’s Guide to PlantUML
@enduml

Guide de référence du langage PlantUML (1.2025.0) 500 / 580

23.7 Listing Sprites 23 DEFINING AND USING SPRITES

Most collections have files called all that allow you to see a whole sub-collection at once. Else you
need to find the sprites that interest you and include them one by one. Unfortunately, the version of
a collection included in StdLib often does not have such all files, so as you see above we include the
collection from github, not from StdLib.

All sprites are in grayscale, but most collections define specific macros that include appropriate (vendor-
specific) colors.

Guide de référence du langage PlantUML (1.2025.0) 501 / 580

24 SKINPARAM COMMAND

24 Skinparam command
You can change colors and font of the drawing using the skinparam command.

Example:

skinparam backgroundColor transparent

Important: skinparam is being phased out, see comments in issue#1464. It is still supported for simple
cases (and for backward compatibility), but users should migrate to style, which supports more complex
cases.

24.1 Usage
You can use this command :

• In the diagram definition, like any other commands,

• In an included file,

• In a configuration file, provided in the command line or the ANT task.

24.2 Nested
To avoid repetition, it is possible to nest definition. So the following definition :

skinparam xxxxParam1 value1
skinparam xxxxParam2 value2
skinparam xxxxParam3 value3
skinparam xxxxParam4 value4

is strictly equivalent to:

skinparam xxxx {
Param1 value1
Param2 value2
Param3 value3
Param4 value4

}

24.3 Black and White
You can force the use of a black&white output using skinparam monochrome true command.

@startuml

skinparam monochrome true

actor User
participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C
C --> B: WorkDone
destroy C

Guide de référence du langage PlantUML (1.2025.0) 502 / 580

24.4 Shadowing 24 SKINPARAM COMMAND

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml

24.4 Shadowing
You can disable the shadowing using the skinparam shadowing false command.

@startuml

left to right direction

skinparam shadowing<<no_shadow>> false
skinparam shadowing<<with_shadow>> true

actor User
(Glowing use case) <<with_shadow>> as guc
(Flat use case) <<no_shadow>> as fuc
User -- guc
User -- fuc

@enduml

24.5 Reverse colors
You can force the use of a black&white output using skinparam monochrome reverse command. This
can be useful for black background environment.

Guide de référence du langage PlantUML (1.2025.0) 503 / 580

24.6 Colors 24 SKINPARAM COMMAND

@startuml

skinparam monochrome reverse

actor User
participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C
C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml

24.6 Colors
You can use either standard color name or RGB code.

@startuml
colors
@enduml

Guide de référence du langage PlantUML (1.2025.0) 504 / 580

24.7 Font color, name and size 24 SKINPARAM COMMAND

transparent can only be used for background of the image.

24.7 Font color, name and size
You can change the font for the drawing using xxxFontColor, xxxFontSize and xxxFontName parameters.

Example:

skinparam classFontColor red
skinparam classFontSize 10
skinparam classFontName Aapex

You can also change the default font for all fonts using skinparam defaultFontName.

Example:

skinparam defaultFontName Aapex

Please note the fontname is highly system dependent, so do not over use it, if you look for portability.
Helvetica and Courier should be available on all systems.

A lot of parameters are available. You can list them using the following command:

java -jar plantuml.jar -language

24.8 Text Alignment
Text alignment can be set to left, right or center in skinparam sequenceMessageAlign. You can
also use direction or reverseDirection values to align text depending on arrow direction.

Param name Default value Comment
sequenceMessageAlign left Used for messages in sequence diagrams
sequenceReferenceAlign center Used for ref over in sequence diagrams

@startuml
skinparam sequenceMessageAlign center
Alice -> Bob : Hi
Bob -> Alice : This is very long
@enduml

Guide de référence du langage PlantUML (1.2025.0) 505 / 580

24.9 Examples 24 SKINPARAM COMMAND

@startuml
skinparam sequenceMessageAlign right
Alice -> Bob : Hi
Bob -> Alice : This is very long
@enduml

@startuml
skinparam sequenceMessageAlign direction
Alice -> Bob : Hi
Bob -> Alice: Hi
@enduml

24.9 Examples
@startuml
skinparam backgroundColor #EEEBDC
skinparam handwritten true

skinparam sequence {
ArrowColor DeepSkyBlue
ActorBorderColor DeepSkyBlue
LifeLineBorderColor blue
LifeLineBackgroundColor #A9DCDF

ParticipantBorderColor DeepSkyBlue
ParticipantBackgroundColor DodgerBlue
ParticipantFontName Impact
ParticipantFontSize 17
ParticipantFontColor #A9DCDF

ActorBackgroundColor aqua
ActorFontColor DeepSkyBlue
ActorFontSize 17
ActorFontName Aapex

Guide de référence du langage PlantUML (1.2025.0) 506 / 580

24.9 Examples 24 SKINPARAM COMMAND

}

actor User
participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C
C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A
@enduml

@startuml
skinparam handwritten true

skinparam actor {
BorderColor black
FontName Courier

BackgroundColor<< Human >> Gold
}

skinparam usecase {
BackgroundColor DarkSeaGreen
BorderColor DarkSlateGray

BackgroundColor<< Main >> YellowGreen

Guide de référence du langage PlantUML (1.2025.0) 507 / 580

24.9 Examples 24 SKINPARAM COMMAND

BorderColor<< Main >> YellowGreen

ArrowColor Olive
}

User << Human >>
:Main Database: as MySql << Application >>
(Start) << One Shot >>
(Use the application) as (Use) << Main >>

User -> (Start)
User --> (Use)

MySql --> (Use)
@enduml

@startuml
skinparam roundcorner 20
skinparam class {
BackgroundColor PaleGreen
ArrowColor SeaGreen
BorderColor SpringGreen
}
skinparam stereotypeCBackgroundColor YellowGreen

Class01 "1" *-- "many" Class02 : contains

Class03 o-- Class04 : aggregation
@enduml

@startuml
skinparam interface {

backgroundColor RosyBrown
borderColor orange

}

skinparam component {
FontSize 13

Guide de référence du langage PlantUML (1.2025.0) 508 / 580

24.9 Examples 24 SKINPARAM COMMAND

BackgroundColor<<Apache>> LightCoral
BorderColor<<Apache>> #FF6655
FontName Courier
BorderColor black
BackgroundColor gold
ArrowFontName Impact
ArrowColor #FF6655
ArrowFontColor #777777

}

() "Data Access" as DA
[Web Server] << Apache >>

DA - [First Component]
[First Component] ..> () HTTP : use
HTTP - [Web Server]
@enduml

@startuml
[AA] <<static lib>>
[BB] <<shared lib>>
[CC] <<static lib>>

node node1
node node2 <<shared node>>
database Production

skinparam component {
backgroundColor<<static lib>> DarkKhaki
backgroundColor<<shared lib>> Green

}

skinparam node {
borderColor Green
backgroundColor Yellow
backgroundColor<<shared node>> Magenta
}
skinparam databaseBackgroundColor Aqua
@enduml

Guide de référence du langage PlantUML (1.2025.0) 509 / 580

24.10 List of all skinparam parameters 24 SKINPARAM COMMAND

24.10 List of all skinparam parameters
You can use -language on the command line or generate a ”diagram” with a list of all the skinparam
parameters using :

• help skinparams

• skinparameters

24.10.1 Command Line: -language command

Since the documentation is not always up to date, you can have the complete list of parameters using
this command:

java -jar plantuml.jar -language

24.10.2 Command: help skinparams

That will give you the following result, from this page (code of this command): CommandHelpSkin-
param.java

@startuml
help skinparams
@enduml

24.10.3 Command: skinparameters

@startuml
skinparameters
@enduml

Guide de référence du langage PlantUML (1.2025.0) 510 / 580

24.10 List of all skinparam parameters 24 SKINPARAM COMMAND

Guide de référence du langage PlantUML (1.2025.0) 511 / 580

24.10 List of all skinparam parameters 24 SKINPARAM COMMAND

Guide de référence du langage PlantUML (1.2025.0) 512 / 580

24.10 List of all skinparam parameters 24 SKINPARAM COMMAND

24.10.4 All Skin Parameters on the Ashley’s PlantUML Doc

You can also view each skinparam parameters with its results displayed at the page All Skin Parameters
of Ashley's PlantUML Doc:

• https://plantuml-documentation.readthedocs.io/en/latest/formatting/all-skin-params.html.

Guide de référence du langage PlantUML (1.2025.0) 513 / 580

25 PREPROCESSEUR

25 Preprocesseur
Des fonctionnalités de préprocessing ont été incluses dans PlantUML et sont disponibles pour tous les
diagrammes.

Ces fonctionnalités sont assez proches du préprocesseur du language C, à la différence pour le caractère
a été remplacé par le point d’exclamation !.

25.1 Variable definition [=, ?=]
Although this is not mandatory, we highly suggest that variable names start with a $.

There are three types of data:

• Integer number (int);

• String (str) - these must be surrounded by single quote or double quote;

• JSON (JSON) - either JSON Array or JSON Object or JSON value created by %str2json.

(for JSON variable definition and usage, see more details on Preprocessing-JSON page)

Variables created outside function are global, that is you can access them from everywhere (including
from functions). You can emphasize this by using the optional global keyword when defining a variable.

@startuml
!$a = 42
!$ab = "foo1"
!$cd = "foo2"
!$ef = $ab + $cd
!$foo = { "name": "John", "age" : 30 }

Alice -> Bob : $a
Alice -> Bob : $ab
Alice -> Bob : $cd
Alice -> Bob : $ef
Alice -> Bob : Do you know **$foo.name** ?
@enduml

You can also assign a value to a variable, only if it is not already defined, with the syntax: !$a ?= "foo"

@startuml
Alice -> Bob : 1. **$name** should be empty

!$name ?= "Charlie"
Alice -> Bob : 2. **$name** should be Charlie

!$name = "David"
Alice -> Bob : 3. **$name** should be David

!$name ?= "Ethan"

Guide de référence du langage PlantUML (1.2025.0) 514 / 580

25.2 Boolean expression 25 PREPROCESSEUR

Alice -> Bob : 4. **$name** should be David
@enduml

25.2 Boolean expression
25.2.1 Boolean representation [0 is false]

There is not real boolean type, but PlantUML use this integer convention:

• Integer 0 means false

• and any non-null number (as 1) or any string (as "1", or even "0") means true.

[Ref. QA-9702]

25.2.2 Boolean operation and operator [&&, ||, ()]

You can use boolean expression, in the test, with :

• parenthesis ();

• and operator &&;

• or operator ||.

(See next example, within if test.)

25.2.3 Boolean builtin functions [%false(), %true(), %not(<exp>), %boolval(<exp>)]

For convenience, you can use those boolean builtin functions:

• %false()

• %true()

• %not(<exp>)

• %boolval(<exp>)

[See also Builtin functions] [Ref. PR-1873]

25.3 Conditions [!if, !else, !elseif, !endif]
• You can use expression in condition.

• else and elseif are also implemented

@startuml
!$a = 10
!$ijk = "foo"
Alice -> Bob : A
!if ($ijk == "foo") && ($a+10>=4)
Alice -> Bob : yes
!else
Alice -> Bob : This should not appear

Guide de référence du langage PlantUML (1.2025.0) 515 / 580

25.4 While loop [!while, !endwhile] 25 PREPROCESSEUR

!endif
Alice -> Bob : B
@enduml

25.4 While loop [!while, !endwhile]
You can use !while and !endwhile keywords to have repeat loops.

25.4.1 While loop (on Activity diagram)

@startuml
!procedure $foo($arg)

:procedure start;
!while $arg!=0
!$i=3
#palegreen:arg=$arg;
!while $i!=0
:arg=$arg and i=$i;
!$i = $i - 1

!endwhile
!$arg = $arg - 1

!endwhile
:procedure end;

!endprocedure

start
$foo(2)
end
@enduml

Guide de référence du langage PlantUML (1.2025.0) 516 / 580

25.4 While loop [!while, !endwhile] 25 PREPROCESSEUR

[Adapted from QA-10838]

25.4.2 While loop (on Mindmap diagram)

@startmindmap
!procedure $foo($arg)

!while $arg!=0
!$i=3
**[#palegreen] arg = $arg
!while $i!=0
*** i = $i
!$i = $i - 1

!endwhile
!$arg = $arg - 1

!endwhile
!endprocedure

*:While
Loop;
$foo(2)
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 517 / 580

25.5 Procedure [!procedure, !endprocedure] 25 PREPROCESSEUR

25.4.3 While loop (on Component/Deployment diagram)

@startuml
!procedure $foo($arg)

!while $arg!=0
[Component $arg] as $arg
!$arg = $arg - 1

!endwhile
!endprocedure

$foo(4)

1->2
3-->4
@enduml

[Ref. QA-14088]

25.5 Procedure [!procedure, !endprocedure]
• Procedure names should start with a $

• Argument names should start with a $

• Procedures can call other procedures

Example:

@startuml
!procedure $msg($source, $destination)

$source --> $destination
!endprocedure

Guide de référence du langage PlantUML (1.2025.0) 518 / 580

25.6 Return function [!function, !endfunction] 25 PREPROCESSEUR

!procedure $init_class($name)
class $name {
$addCommonMethod()

}
!endprocedure

!procedure $addCommonMethod()
toString()
hashCode()

!endprocedure

$init_class("foo1")
$init_class("foo2")
$msg("foo1", "foo2")
@enduml

Variables defined in procedures are local. It means that the variable is destroyed when the procedure
ends.

25.6 Return function [!function, !endfunction]
A return function does not output any text. It just define a function that you can call:

• directly in variable definition or in diagram text

• from other return functions

• from procedures

• Function name should start with a $

• Argument names should start with a $

@startuml
!function $double($a)
!return $a + $a
!endfunction

Alice -> Bob : The double of 3 is $double(3)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 519 / 580

25.7 Default argument value 25 PREPROCESSEUR

It is possible to shorten simple function definition in one line:

@startuml
!function $double($a) !return $a + $a

Alice -> Bob : The double of 3 is $double(3)
Alice -> Bob : $double("This work also for strings.")
@enduml

As in procedure (void function), variable are local by default (they are destroyed when the function is
exited). However, you can access to global variables from function. However, you can use the local
keyword to create a local variable if ever a global variable exists with the same name.

@startuml
!function $dummy()
!local $ijk = "local"
!return "Alice -> Bob : " + $ijk
!endfunction

!global $ijk = "foo"

Alice -> Bob : $ijk
$dummy()
Alice -> Bob : $ijk
@enduml

25.7 Default argument value
In both procedure and return functions, you can define default values for arguments.

@startuml
!function $inc($value, $step=1)
!return $value + $step
!endfunction

Alice -> Bob : Just one more $inc(3)
Alice -> Bob : Add two to three : $inc(3, 2)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 520 / 580

25.8 Unquoted procedure or function [!unquoted] 25 PREPROCESSEUR

Only arguments at the end of the parameter list can have default values.

@startuml
!procedure defaulttest($x, $y="DefaultY", $z="DefaultZ")
note over Alice

x = $x
y = $y
z = $z

end note
!endprocedure

defaulttest(1, 2, 3)
defaulttest(1, 2)
defaulttest(1)
@enduml

25.8 Unquoted procedure or function [!unquoted]
By default, you have to put quotes when you call a function or a procedure. It is possible to use the
unquoted keyword to indicate that a function or a procedure does not require quotes for its arguments.

@startuml
!unquoted function id($text1, $text2="FOO") !return $text1 + $text2

alice -> bob : id(aa)
alice -> bob : id(ab,cd)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 521 / 580

25.9 Keywords arguments 25 PREPROCESSEUR

25.9 Keywords arguments
Like in Python, you can use keywords arguments :

@startuml

!unquoted procedure $element($alias, $description="", $label="", $technology="", $size=12, $colour="green")
rectangle $alias as "
<color:$colour><<$alias>></color>
==$label==
//<size:$size>[$technology]</size>//

$description"
!endprocedure

$element(myalias, "This description is %newline()on several lines", $size=10, $technology="Java")
@enduml

25.10 Including files or URL [!include, !include_many, !include_once]
Use the !include directive to include file in your diagram. Using URL, you can also include file from
Internet/Intranet. Protected Internet resources can also be accessed, this is described in URL authenti-
cation.

Imagine you have the very same class that appears in many diagrams. Instead of duplicating the descrip-
tion of this class, you can define a file that contains the description.

@startuml

interface List
List : int size()
List : void clear()
List <|.. ArrayList
@enduml

File List.iuml

interface List
List : int size()
List : void clear()

The file List.iuml can be included in many diagrams, and any modification in this file will change all
diagrams that include it.

Guide de référence du langage PlantUML (1.2025.0) 522 / 580

25.11 Including Subpart [!startsub, !endsub, !includesub] 25 PREPROCESSEUR

You can also put several @startuml/@enduml text block in an included file and then specify which block
you want to include adding !0 where 0 is the block number. The !0 notation denotes the first diagram.

For example, if you use !include foo.txt!1, the second @startuml/@enduml block within foo.txt will
be included.

You can also put an id to some @startuml/@enduml text block in an included file using @startuml(id=MY_OWN_ID)
syntax and then include the block adding !MY_OWN_ID when including the file, so using something like
!include foo.txt!MY_OWN_ID.

By default, a file can only be included once. You can use !include_many instead of !include if you
want to include some file several times. Note that there is also a !include_once directive that raises an
error if a file is included several times.

25.11 Including Subpart [!startsub, !endsub, !includesub]
You can also use !startsub NAME and !endsub to indicate sections of text to include from other files
using !includesub. For example:

file1.puml:

@startuml

A -> A : stuff1
!startsub BASIC
B -> B : stuff2
!endsub
C -> C : stuff3
!startsub BASIC
D -> D : stuff4
!endsub
@enduml

file1.puml would be rendered exactly as if it were:

@startuml

A -> A : stuff1
B -> B : stuff2
C -> C : stuff3
D -> D : stuff4
@enduml

However, this would also allow you to have another file2.puml like this:

file2.puml

@startuml

title this contains only B and D
!includesub file1.puml!BASIC
@enduml

This file would be rendered exactly as if:

@startuml

title this contains only B and D
B -> B : stuff2
D -> D : stuff4
@enduml

25.12 Builtin functions [%]
Some functions are defined by default. Their name starts by %

Guide de référence du langage PlantUML (1.2025.0) 523 / 580

25.13 Logging [!log] 25 PREPROCESSEUR

Name Description Example Return
%boolval Convert a value (String, Integer, JSON value) to boolean value %boolval("true") 1
%call_user_func Invoke a return function by its name with given arguments. %call_user_func("bold", "Hello") Depends on the called function
%chr Return a character from a give Unicode value %chr(65) A
%darken Return a darken color of a given color with some ratio %darken("red", 20) #CC0000
%date Retrieve current date. You can provide an optional format for the date %date("yyyy.MM.dd' at 'HH:mm") current date

You can provide another optional time (on epoch format) %date("YYYY-MM-dd", %now() + 1*24*3600) tomorrow date
%dec2hex Return the hexadecimal string (String) of a decimal value (Int) %dec2hex(12) c
%dirpath Retrieve current dirpath %dirpath() current path
%feature Check if some feature is available in the current PlantUML running version %feature("theme") true
%false Return always false %false() false
%file_exists Check if a file exists on the local filesystem %file_exists("c:/foo/dummy.txt") true if the file exists
%filename Retrieve current filename %filename() current filename
%function_exists Check if a function exists %function_exists("$some_function") true if the function has been defined
%get_all_theme Retreive a JSON Array of all PlantUML theme %get_all_theme() ["_none_", "amiga", ..., "vibrant"]
%get_all_stdlib Retreive a JSON Array of all PlantUML stdlib names %get_all_stdlib() ["archimate", "aws", ..., "tupadr3"]
%get_all_stdlib Retreive a JSON Object of all PlantUML stdlib information %get_all_stdlib(detailed) a JSON Object with stdlib information
%get_variable_value Retrieve some variable value %get_variable_value("$my_variable") the value of the variable
%getenv Retrieve environment variable value %getenv("OS") the value of OS variable
%hex2dec Return the decimal value (Int) of a hexadecimal string (String) %hex2dec("d") or %hex2dec(d) 13
%hsl_color Return the RGBa color from a HSL color %hsl_color(h, s, l) or %hsl_color(h, s, l, a) %hsl_color(120, 100, 50) #00FF00
%intval Convert a String to Int %intval("42") 42
%invoke_procedure Dynamically invoke a procedure by its name, passing optional arguments to the called procedure. %invoke_procedure("$go", "hello from Bob...") Depends on the invoked procedure
%is_dark Check if a color is a dark one %is_dark("#000000") true
%is_light Check if a color is a light one %is_light("#000000") false
%lighten Return a lighten color of a given color with some ratio %lighten("red", 20) #CC3333
%load_json Load JSON data from local file or external URL %load_json("http://localhost:7778/management/health") JSON data
%lower Return a lowercase string %lower("Hello") hello in that example
%mod Return the remainder of division of two integers (modulo division) %mod(10, 3) 1
%newline Return a newline %newline() a newline
%not Return the logical negation of an expression %not(2+2==4) false in that example
%now Return the current epoch time %now() 1685547132 in that example (when updating the doc.)
%ord Return a Unicode value from a given character %ord("A") 65
%lighten Return a lighten color of a given color with some ratio %lighten("red", 20) #CC3333
%random() Return randomly the integer 0 or 1 %random() 0 or 1
%random(n) Return randomly an interger between 0 and n - 1 %random(5) 3
%random(min, max) Return randomly an interger between min and max - 1 %random(7, 15) 13
%reverse_color Reverse a color using RGB %reverse_color("#FF7700") #0088FF
%reverse_hsluv_color Reverse a color using HSLuv %reverse_hsluv_color("#FF7700") #602800
%set_variable_value Set a global variable %set_variable_value("$my_variable", "some_value") an empty string
%size Return the size of any string or JSON structure %size("foo") 3 in the example
%splitstr Split a string into an array based on a specified delimiter. %splitstr("abc", "~") ["abc", "def", "ghi"]
%splitstr_regex Split a string into an array based on a specified REGEX. %splitstr_regex("AbcDefGhi", "(?=[A-Z])") ["Abc", "Def", "Ghi"]
%string Convert an expression to String %string(1 + 2) 3 in the example
%strlen Calculate the length of a String %strlen("foo") 3 in the example
%strpos Search a substring in a string %strpos("abcdef", "ef") 4 (position of ef)
%substr Extract a substring. Takes 2 or 3 arguments %substr("abcdef", 3, 2) "de" in the example
%true Return always true %true() true
%upper Return an uppercase string %upper("Hello") HELLO in that example
%variable_exists Check if a variable exists %variable_exists("$my_variable") true if the variable has been defined exists
%version Return PlantUML current version %version() 1.2020.8 for example

25.13 Logging [!log]
You can use !log to add some log output when generating the diagram. This has no impact at all on
the diagram itself. However, those logs are printed in the command line’s output stream. This could be
useful for debug purpose.

Guide de référence du langage PlantUML (1.2025.0) 524 / 580

25.14 Memory dump [!dump_memory] 25 PREPROCESSEUR

@startuml
!function bold($text)
!$result = ""+ $text +""
!log Calling bold function with $text. The result is $result
!return $result
!endfunction

Alice -> Bob : This is bold("bold")
Alice -> Bob : This is bold("a second call")
@enduml

25.14 Memory dump [!dump_memory]
You can use !dump_memory to dump the full content of the memory when generating the diagram. An
optional string can be put after !dump_memory. This has no impact at all on the diagram itself. This
could be useful for debug purpose.

@startuml
!function $inc($string)
!$val = %intval($string)
!log value is $val
!dump_memory
!return $val+1
!endfunction

Alice -> Bob : 4 $inc("3")
!unused = "foo"
!dump_memory EOF
@enduml

25.15 Assertion [!assert]
You can put assertions in your diagram.

@startuml
Alice -> Bob : Hello
!assert %strpos("abcdef", "cd")==3 : "This always fails"
@enduml

Guide de référence du langage PlantUML (1.2025.0) 525 / 580

25.16 Building custom library [!import, !include] 25 PREPROCESSEUR

25.16 Building custom library [!import, !include]
It’s possible to package a set of included files into a single .zip or .jar archive. This single zip/jar can
then be imported into your diagram using !import directive.

Once the library has been imported, you can !include file from this single zip/jar.

Example:

@startuml

!import /path/to/customLibrary.zip
' This just adds "customLibrary.zip" in the search path

!include myFolder/myFile.iuml
' Assuming that myFolder/myFile.iuml is located somewhere
' either inside "customLibrary.zip" or on the local filesystem

...

25.17 Search path
You can specify the java property plantuml.include.path in the command line.

For example:

java -Dplantuml.include.path="c:/mydir" -jar plantuml.jar atest1.txt

Note the this -D option has to put before the -jar option. -D options after the -jar option will be used to
define constants within plantuml preprocessor.

25.18 Argument concatenation [##]
It is possible to append text to a macro argument using the ## syntax.

@startuml
!unquoted procedure COMP_TEXTGENCOMP(name)
[name] << Comp >>
interface Ifc << IfcType >> AS name##Ifc
name##Ifc - [name]
!endprocedure
COMP_TEXTGENCOMP(dummy)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 526 / 580

25.19 Dynamic invocation [%invoke_procedure(), %call_user_func()] 25 PREPROCESSEUR

25.19 Dynamic invocation [%invoke_procedure(), %call_user_func()]
You can dynamically invoke a procedure using the special %invoke_procedure() procedure. This pro-
cedure takes as first argument the name of the actual procedure to be called. The optional following
arguments are copied to the called procedure.

For example, you can have:

@startuml
!procedure $go()

Bob -> Alice : hello
!endprocedure

!$wrapper = "$go"

%invoke_procedure($wrapper)
@enduml

@startuml
!procedure $go($txt)

Bob -> Alice : $txt
!endprocedure

%invoke_procedure("$go", "hello from Bob...")
@enduml

For return functions, you can use the corresponding special function %call_user_func() :

@startuml
!function bold($text)
!return ""+ $text +""
!endfunction

Alice -> Bob : %call_user_func("bold", "Hello") there
@enduml

Guide de référence du langage PlantUML (1.2025.0) 527 / 580

25.20 Evaluation of addition depending of data types [+] 25 PREPROCESSEUR

25.20 Evaluation of addition depending of data types [+]
Evaluation of $a + $b depending of type of $a or $b

@startuml
title
<#LightBlue>|= |= $a |= $b |= <U+0025>string($a + $b)|
<#LightGray>| type | str | str | str (concatenation) |
| example |= "a" |= "b" |= %string("a" + "b") |
<#LightGray>| type | str | int | str (concatenation) |
| ex.|= "a" |= 2 |= %string("a" + 2) |
<#LightGray>| type | str | int | str (concatenation) |
| ex.|= 1 |= "b" |= %string(1 + "b") |
<#LightGray>| type | bool | str | str (concatenation) |
| ex.|= <U+0025>true() |= "b" |= %string(%true() + "b") |
<#LightGray>| type | str | bool | str (concatenation) |
| ex.|= "a" |= <U+0025>false() |= %string("a" + %false()) |
<#LightGray>| type | int | int | int (addition of int) |
| ex.|= 1 |= 2 |= %string(1 + 2) |
<#LightGray>| type | bool | int | int (addition) |
| ex.|= <U+0025>true() |= 2 |= %string(%true() + 2) |
<#LightGray>| type | int | bool | int (addition) |
| ex.|= 1 |= <U+0025>false() |= %string(1 + %false()) |
<#LightGray>| type | int | int | int (addition) |
| ex.|= 1 |= <U+0025>intval("2") |= %string(1 + %intval("2")) |
end title
@enduml

25.21 Preprocessing JSON
You can extend the functionality of the current Preprocessing with JSON Preprocessing features:

• JSON Variable definition

• Access to JSON data

• Loop over JSON array

(See more details on Preprocessing-JSON page)

25.22 Including theme [!theme]
Use the !theme directive to change the default theme of your diagram.

Guide de référence du langage PlantUML (1.2025.0) 528 / 580

25.23 Migration notes 25 PREPROCESSEUR

@startuml
!theme spacelab
class Example {

Theme spacelab
}
@enduml

You will find more information on the dedicated page.

25.23 Migration notes
The current preprocessor is an update from some legacy preprocessor.

Even if some legacy features are still supported with the actual preprocessor, you should not use them
any more (they might be removed in some long term future).

• You should not use !define and !definelong anymore. Use !function, !procedure or variable
definition instead.

– !define should be replaced by return !function

– !definelong should be replaced by !procedure.

• !include now allows multiple inclusions : you don’t have to use !include_many anymore

• !include now accepts a URL, so you don’t need !includeurl

• Some features (like %date%) have been replaced by builtin functions (for example %date())

• When calling a legacy !definelong macro with no arguments, you do have to use parenthesis.
You have to use my_own_definelong() because my_own_definelong without parenthesis is not
recognized by the new preprocessor.

Please contact us if you have any issues.

25.24 %splitstr builtin function
@startmindmap
!$list = %splitstr("abc~def~ghi", "~")

* root
!foreach $item in $list

** $item
!endfor
@endmindmap

Similar to:

Guide de référence du langage PlantUML (1.2025.0) 529 / 580

25.25 %splitstr_regex builtin function 25 PREPROCESSEUR

@startmindmap
* root
!foreach $item in ["abc", "def", "ghi"]

** $item
!endfor
@endmindmap

[Ref. QA-15374]

25.25 %splitstr_regex builtin function
@startmindmap
!$list = %splitstr_regex("AbcDefGhi", "(?=[A-Z])")

* root
!foreach $item in $list

** $item
!endfor
@endmindmap

Similar to:

@startmindmap
* root
!foreach $item in ["Abc", "Def", "Ghi"]

** $item
!endfor
@endmindmap

Guide de référence du langage PlantUML (1.2025.0) 530 / 580

25.26 %get_all_theme builtin function 25 PREPROCESSEUR

[Ref. QA-18827]

25.26 %get_all_theme builtin function
You can use the %get_all_theme() builtin function to retreive a JSON array of all PlantUML theme.

@startjson
%get_all_theme()
@endjson

Guide de référence du langage PlantUML (1.2025.0) 531 / 580

25.27 %get_all_stdlib builtin function 25 PREPROCESSEUR

[from version 1.2024.4]

25.27 %get_all_stdlib builtin function
25.27.1 Compact version (only standard library name)

You can use the %get_all_stdlib() builtin function to retreive a JSON array of all PlantUML stdlib
names.

@startjson
%get_all_stdlib()
@endjson

25.27.2 Detailed version (with version and source)

With whatever parameter, you can use %get_all_stdlib(detailed) to retreive a JSON object of all
PlantUML stdlib.

@startjson
%get_all_stdlib(detailed)
@endjson

Guide de référence du langage PlantUML (1.2025.0) 532 / 580

25.27 %get_all_stdlib builtin function 25 PREPROCESSEUR

Guide de référence du langage PlantUML (1.2025.0) 533 / 580

25.28 %random builtin function 25 PREPROCESSEUR

[from version 1.2024.4]

25.28 %random builtin function
You can use the %random builtin function to retreive a random integer.

Nb param. Input Output
0 %random() returns 0 or 1
1 %random(n) returns an interger between 0 and n - 1
2 %random(min, max) returns an interger between min and max - 1

@startcreole
Nb param.	Input	Output
0	<U+0025>random()	%random()
1	<U+0025>random(5)	%random(5)
2	<U+0025>random(7, 15)	%random(7, 15)
@endcreole

[from version 1.2024.2]

25.29 %boolval builtin function
You can use the %boolval builtin function to manage boolean value.

@startcreole
<#ccc>|= Input |= Output |
<U+0025>boolval(1)	%boolval(1)
<U+0025>boolval(0)	%boolval(0)
<U+0025>boolval(<U+0025>true())	%boolval(%true())
<U+0025>boolval(<U+0025>false())	%boolval(%false())
<U+0025>boolval(true)	%boolval(true)
<U+0025>boolval(false)	%boolval(false)
<U+0025>boolval(TRUE)	%boolval(TRUE)
<U+0025>boolval(FALSE)	%boolval(FALSE)
<U+0025>boolval("true")	%boolval("true")
<U+0025>boolval("false")	%boolval("false")
<U+0025>boolval(<U+0025>str2json("true"))	%boolval(%str2json("true"))
<U+0025>boolval(<U+0025>str2json("false"))	%boolval(%str2json("false"))
@endcreole

[Ref. PR-1873, from version 1.2024.7]

Guide de référence du langage PlantUML (1.2025.0) 534 / 580

26 UNICODE

26 Unicode
Le langage PlantUML utilise des lettres pour définir les acteurs, les cas d’utilisation, etc.

Mais les lettres ne sont pas seulement des caractères latins A-Z, il peut s’agir de n’importe quel type de
lettre de n’importe quelle langue

26.1 Examples
@startuml
skinparam handwritten true
skinparam backgroundColor #EEEBDC

actor 使用者
participant "頭等艙" as A
participant "第二類" as B
participant "最後一堂課" as 別的東西

使用者 -> A: 完成這項工作
activate A

A -> B: 創建請求
activate B

B -> 別的東西: 創建請求
activate 別的東西
別的東西 --> B: 這項工作完成
destroy 別的東西

B --> A: 請求創建
deactivate B

A --> 使用者: 做完
deactivate A
@enduml

@startuml

(*) --> "膩平台"
--> === S1 ===
--> 鞠躬向公眾

Guide de référence du langage PlantUML (1.2025.0) 535 / 580

26.1 Examples 26 UNICODE

--> === S2 ===
--> 這傢伙波武器
--> (*)

skinparam backgroundColor #AAFFFF
skinparam activityStartColor red
skinparam activityBarColor SaddleBrown
skinparam activityEndColor Silver
skinparam activityBackgroundColor Peru
skinparam activityBorderColor Peru
@enduml

@startuml

skinparam usecaseBackgroundColor DarkSeaGreen
skinparam usecaseArrowColor Olive
skinparam actorBorderColor black
skinparam usecaseBorderColor DarkSlateGray

使用者 << 人類 >>
"主數據庫" as 數據庫 << 應用程式 >>
(草創) << 一桿 >>
"主数据燕" as (贏余) << 基本的 >>

使用者 -> (草創)
使用者 --> (贏余)

數據庫 --> (贏余)
@enduml

Guide de référence du langage PlantUML (1.2025.0) 536 / 580

26.2 Jeu de caractères 26 UNICODE

@startuml

() ”Σ�������������” as Σ�������

Σ������� - [Π���� �����������]

[Π���� �����������] ..> () Α���� : Α���� �� ���������������� ������

@enduml

26.2 Jeu de caractères
Le jeu de caractères par défaut utilisé lors de la lecture des fichiers texte contenant la description textuelle
UML dépend du système.

Normalement, il devrait convenir, mais dans certains cas, vous pouvez souhaiter utiliser un autre jeu de
caractères. Par exemple, avec la ligne de commande

java -jar plantuml.jar -charset UTF-8 files.txt

ou avec la tâche ant

<!-- Put images in c:/images directory -->
<target name="main">
<plantuml dir="./src" charset="UTF-8" />

En fonction de votre installation Java, les jeux de caractères suivants devraient être disponibles : ISO-8859-1,
UTF-8, UTF-16BE, UTF-16LE, UTF-16

26.3 Using Unicode Character on PlantUML
On PlantUML diagram, you can integrate:

• Special characters using &#XXXX; or <U+XXXX> form;

• Emoji using <:XXXXX:> or <:NameOfEmoji:>form.

Guide de référence du langage PlantUML (1.2025.0) 537 / 580

27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27 Bibliothèque standard de PlantUML
Bienvenue au guide sur la bibliothèque standard officielle de PlantUML (stdlib). Ici, nous nous
plongeons dans cette ressource intégrale qui est maintenant incluse dans toutes les versions officielles de
PlantUML, facilitant une expérience de création de diagramme plus riche. La bibliothèque emprunte sa
convention d’inclusion de fichiers à la ”bibliothèque standard C”, un protocole bien établi dans le monde
de la programmation.

27.0.1 Vue d’ensemble de la bibliothèque standard

La bibliothèque standard est un dépôt de fichiers et de ressources, constamment mis à jour pour améliorer
votre expérience de PlantUML. Elle forme l’épine dorsale de PlantUML, offrant une gamme de fonction-
nalités et de caractéristiques à explorer.

27.0.2 Contribution de la communauté

Une partie importante du contenu de la bibliothèque est généreusement fournie par des contributeurs
tiers. Nous leur exprimons notre sincère gratitude pour leurs contributions inestimables qui ont joué un
rôle essentiel dans l’enrichissement de la bibliothèque.

Nous encourageons les utilisateurs à se plonger dans les abondantes ressources offertes par la bibliothèque
standard, non seulement pour améliorer leur expérience de création de diagrammes, mais aussi pour
contribuer et faire partie de cet effort de collaboration.

27.1 Contenu de la bibliothèque standard
Vous pouvez obtenir le contenu la bibliothèque standard à l’aide du diagramme spécial suivant:

@startuml
stdlib
@enduml

Guide de référence du langage PlantUML (1.2025.0) 538 / 580

27.1 Contenu de la bibliothèque standard 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

Guide de référence du langage PlantUML (1.2025.0) 539 / 580

27.2 ArchiMate [archimate] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

Il est également possible d’utiliser la ligne de commande java -jar plantuml.jar -stdlib pour afficher
cette même liste.

Enfin, vous pouvez extraire les sources complètes de la bibliothèque standard en utilisant java -jar
plantuml.jar -extractstdlib. Tous les fichiers seront extraits dans le dossier stdlib.

Les sources utilisées pour construire les versions officielles de PlantUML sont hébergées ici https://github.com/plantuml/plantuml-
stdlib. Vous pouvez créer une demande pour mettre à jour ou ajouter une bibliothèque si vous la trouvez
pertinente.

27.2 ArchiMate [archimate]
Type Lien
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/archimate
src https://github.com/ebbypeter/Archimate-PlantUML
orig https://en.wikipedia.org/wiki/ArchiMate

Ce référentiel contient les macros PlantUML d’ArchiMate et d’autres inclusions pour créer des dia-
grammes Archimate facilement et de manière cohérente.

@startuml
!include <archimate/Archimate>

title Archimate Sample - Internet Browser

' Elements
Business_Object(businessObject, "A Business Object")
Business_Process(someBusinessProcess,"Some Business Process")
Business_Service(itSupportService, "IT Support for Business (Application Service)")

Application_DataObject(dataObject, "Web Page Data \n 'on the fly'")
Application_Function(webpageBehaviour, "Web page behaviour")
Application_Component(ActivePartWebPage, "Active Part of the web page \n 'on the fly'")

Technology_Artifact(inMemoryItem,"in memory / 'on the fly' html/javascript")
Technology_Service(internetBrowser, "Internet Browser Generic & Plugin")
Technology_Service(internetBrowserPlugin, "Some Internet Browser Plugin")
Technology_Service(webServer, "Some web server")

'Relationships
Rel_Flow_Left(someBusinessProcess, businessObject, "")
Rel_Serving_Up(itSupportService, someBusinessProcess, "")
Rel_Specialization_Up(webpageBehaviour, itSupportService, "")
Rel_Flow_Right(dataObject, webpageBehaviour, "")
Rel_Specialization_Up(dataObject, businessObject, "")
Rel_Assignment_Left(ActivePartWebPage, webpageBehaviour, "")
Rel_Specialization_Up(inMemoryItem, dataObject, "")
Rel_Realization_Up(inMemoryItem, ActivePartWebPage, "")
Rel_Specialization_Right(inMemoryItem,internetBrowser, "")
Rel_Serving_Up(internetBrowser, webpageBehaviour, "")
Rel_Serving_Up(internetBrowserPlugin, webpageBehaviour, "")
Rel_Aggregation_Right(internetBrowser, internetBrowserPlugin, "")
Rel_Access_Up(webServer, inMemoryItem, "")
Rel_Serving_Up(webServer, internetBrowser, "")
@enduml

Guide de référence du langage PlantUML (1.2025.0) 540 / 580

27.2 ArchiMate [archimate] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.2.1 Liste des sprites possibles

Vous pouvez lister tous les sprites possibles pour Archimate en utilisant le diagramme suivant

@startuml
listsprite
@enduml

Guide de référence du langage PlantUML (1.2025.0) 541 / 580

27.3 Amazon Labs AWS Library [awslib] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.3 Amazon Labs AWS Library [awslib]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/awslib
src https://github.com/awslabs/aws-icons-for-plantuml
orig https://aws.amazon.com/en/architecture/icons/

The Amazon Labs AWS library provides PlantUML sprites, macros, and other includes for Amazon Web
Services (AWS) services and resources.

Used to create PlantUML diagrams with AWS components. All elements are generated from the official
AWS Architecture Icons and when combined with PlantUML and the C4 model, are a great way to
communicate your design, deployment, and topology as code.

@startuml
!include <awslib/AWSCommon>
!include <awslib/InternetOfThings/IoTRule>
!include <awslib/Analytics/KinesisDataStreams>
!include <awslib/ApplicationIntegration/SimpleQueueService>

left to right direction

agent "Published Event" as event #fff

IoTRule(iotRule, "Action Error Rule", "error if Kinesis fails")
KinesisDataStreams(eventStream, "IoT Events", "2 shards")
SimpleQueueService(errorQueue, "Rule Error Queue", "failed Rule actions")

event --> iotRule : JSON message
iotRule --> eventStream : messages
iotRule --> errorQueue : Failed action message
@enduml

Guide de référence du langage PlantUML (1.2025.0) 542 / 580

27.4 Azure library [azure] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.4 Azure library [azure]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/azure
src https://github.com/RicardoNiepel/Azure-PlantUML/
orig Microsoft Azure

The Azure library consists of Microsoft Azure icons.

Use it by including the file that contains the sprite, eg: !include <azure/Analytics/AzureEventHub>.
When imported, you can use the sprite as normally you would, using <$sprite_name>.

You may also include the AzureCommon.puml file, eg: !include <azure/AzureCommon>, which contains
helper macros defined. With the AzureCommon.puml imported, you can use the NAME_OF_SPRITE(parameters...)
macro.

Example of usage:

@startuml
!include <azure/AzureCommon>
!include <azure/Analytics/AzureEventHub>
!include <azure/Analytics/AzureStreamAnalyticsJob>
!include <azure/Databases/AzureCosmosDb>

left to right direction

agent "Device Simulator" as devices #fff

AzureEventHub(fareDataEventHub, "Fare Data", "PK: Medallion HackLicense VendorId; 3 TUs")
AzureEventHub(tripDataEventHub, "Trip Data", "PK: Medallion HackLicense VendorId; 3 TUs")
AzureStreamAnalyticsJob(streamAnalytics, "Stream Processing", "6 SUs")
AzureCosmosDb(outputCosmosDb, "Output Database", "1,000 RUs")

devices --> fareDataEventHub
devices --> tripDataEventHub
fareDataEventHub --> streamAnalytics
tripDataEventHub --> streamAnalytics
streamAnalytics --> outputCosmosDb
@enduml

Guide de référence du langage PlantUML (1.2025.0) 543 / 580

27.5 C4 Library [C4] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.5 C4 Library [C4]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/C4
src https://github.com/plantuml-stdlib/C4-PlantUML
orig https://en.wikipedia.org/wiki/C4_modelhttps://c4model.com

@startuml
!include <C4/C4_Container>

Person(personAlias, "Label", "Optional Description")
Container(containerAlias, "Label", "Technology", "Optional Description")
System(systemAlias, "Label", "Optional Description")

System_Ext(extSystemAlias, "Label", "Optional Description")

Rel(personAlias, containerAlias, "Label", "Optional Technology")

Rel_U(systemAlias, extSystemAlias, "Label", "Optional Technology")
@enduml

27.6 Cloud Insight [cloudinsight]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/cloudinsight
src https://github.com/rabelenda/cicon-plantuml-sprites
orig Cloudinsight icons

This repository contains PlantUML sprites generated from Cloudinsight icons, which can easily be used
in PlantUML diagrams for nice visual representation of popular technologies.

@startuml
!include <cloudinsight/tomcat>
!include <cloudinsight/kafka>
!include <cloudinsight/java>
!include <cloudinsight/cassandra>

title Cloudinsight sprites example

skinparam monochrome true

rectangle "<$tomcat>\nwebapp" as webapp

Guide de référence du langage PlantUML (1.2025.0) 544 / 580

27.7 Cloudogu [cloudogu] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

queue "<$kafka>" as kafka
rectangle "<$java>\ndaemon" as daemon
database "<$cassandra>" as cassandra

webapp -> kafka
kafka -> daemon
daemon --> cassandra
@enduml

27.7 Cloudogu [cloudogu]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/cloudogu
src https://github.com/cloudogu/plantuml-cloudogu-sprites
orig https://cloudogu.com

The Cloudogu library provides PlantUML sprites, macros, and other includes for Cloudogu services and
resources.

@startuml
!include <cloudogu/common>
!include <cloudogu/dogus/jenkins>
!include <cloudogu/dogus/cloudogu>
!include <cloudogu/dogus/scm>
!include <cloudogu/dogus/smeagol>
!include <cloudogu/dogus/nexus>
!include <cloudogu/tools/k8s>

node "Cloudogu Ecosystem" <<$cloudogu>> {
DOGU_JENKINS(jenkins, Jenkins) #ffffff
DOGU_SCM(scm, SCM-Manager) #ffffff
DOGU_SMEAGOL(smeagol, Smeagol) #ffffff
DOGU_NEXUS(nexus,Nexus) #ffffff
}

TOOL_K8S(k8s, Kubernetes) #ffffff

actor developer

developer --> smeagol : "Edit Slides"
smeagol -> scm : Push
scm -> jenkins : Trigger
jenkins -> nexus : Deploy
jenkins --> k8s : Deploy

Guide de référence du langage PlantUML (1.2025.0) 545 / 580

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]27 BIBLIOTHÈQUE STANDARD DE PLANTUML

@enduml

All cloudogu sprites

See all possible cloudogu sprites on plantuml-cloudogu-sprites.

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/edgy
src https://github.com/boessu/plantuml-stdlib/tree/master/edgy
orig https://enterprise.design/

�blockquote��“To become whole, enterprises must embrace a holistic, collaborative way of design: tran-
scending silos, combining perspectives, looking for connections instead of divisions. An enterprise de-
signed together works better together.”

–Bard Papegaaij, Wolfgang Goebl and Milan Guenther, curators of EDGY 23 �blockquote��

EDGY helps to visualize, communicate, and co-design enterprises across different disciplines. EDGY is a
design language that provides guidelines for enterprises to create effective and efficient digital products,
services, and experiences. It was developed by the EDGY team with input from industry experts,
researchers, and practitioners in order to address common challenges faced when developing complex
systems. The foundation of Edgy is based on four key principles: simplicity, modularity, scalability,
and adaptability. These principles are designed to help enterprises create products that can be easily
maintained over time while also being able to scale up or down as needed. Additionally, the language
provides a set of guidelines for designing user interfaces, data models, business processes, and more,
making it an essential toolkit for any organization looking to improve their offerings.

27.8.1 Basic Elements and Interconnections

EDGY is an open-source language for enterprise design that uses only four base elements: people, activity,
object, and outcome. These elements can be specialized into facet and intersection elements, which
describe the enterprise from different perspectives: identity, architecture, and experience.

Guide de référence du langage PlantUML (1.2025.0) 546 / 580

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.8.2 Elements

The basic syntax of an element or a facet is:

$element/facet("label", [identifier], [lightColor])

Parameter Description
label Mandatory: label of the element.
identifier Dependant: Identifies the element (for creating relations). Optional if you don’t link them to other elemets/facets.
lightColor Optional: 0 sets the standared color. 1 sets a lighter color. As default, facets do have lighter colors than elements.

@startuml
!include <edgy/edgy>

$baseFacet("Basic elements") {

$people("People")
note bottom
The individuals co-creating
the enterprise or using
products.

end note

$outcome("Outcome")
note bottom
A result or change that
occurs within our enterprise
or its ecosystem.

end note

$activity("Activity")
note bottom
What is being done or going
on in our enterprise or its
ecosystem.
end note

$object("Object")
note bottom
A structure that is
relevant to the enterprise.

end note
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 547 / 580

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.8.3 Relationships

The elements (or facets) can be connected with three types of relationships: link, flow and tree.

$link/flow/tree(fromIdentifier, toIdentifier, ["Description"])

Parameter Description
fromIdentifier Mandatory: Identifies the starting element of a relation.
toIdentifier Mandatory: Identifies the ending element of a relation.
label Optional: label of the element.

All relations can have a direction hint as a suffix (Up/Down/Left/Right). See examples in the chapter
”Facets”. While it does often help to give PlantUML (basically GraphViz) a direction hint, it not always
helps. if you don’t get the exact result you expect: don’t waste too much lifetime on it.

@startuml
!include <edgy/edgy>

$outcome("Outcome", outcome)
$activity("Activity", activity)
$object("Object", object)

$link(object, activity, "just a link")
$flow(activity, outcome, "a flow with a direction")
$tree(outcome, object, "a hierarchical connection")
@enduml

There are quite some hierarchical linking in edgy. Or maps. So it is also possible to group/nesting
elements:

@startuml
!include <edgy/edgy>

left to right direction

$activity("Parent Activity") {
$activity("Brother", child1, 1)
$activity("Sister", child2, 1)
$activity("Latecomer", child3, 1)

}

$flow(child1, child2)
$flow(child2, child3)

@enduml

Guide de référence du langage PlantUML (1.2025.0) 548 / 580

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.8.4 Facets

A facet is a perspective that relates to any enterprise, featuring a set of questions that an enterprise needs
to answer in order to achieve a coherent design. There are three facets in EDGY: Identity, Architecture,
and Experience. Each facet references five enterprise elements: three facet elements, and two intersection
elements at the overlap with the neighbouring facets.

27.8.5 Identity

The Identity Facet describes why the enterprise exists and what it stands for.

@startuml
!include <edgy/edgy>

$identityFacet(Identity, identity) {
$content(Content, content)
$purpose(Purpose, purpose)
$story(Story, story)
}

$linkLeft(content, purpose)
$linkDown(content, story)
$linkDown(purpose, story)

@enduml

27.8.6 Architecture

The Architecture facet is about the structures and processes that enable the enterprise to operate and
deliver.

@startuml
!include <edgy/edgy>

$architectureFacet(Architecture) {
$process(Process, process)
$asset(Asset, asset)
$capability(Capability, capability)
}

Guide de référence du langage PlantUML (1.2025.0) 549 / 580

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]27 BIBLIOTHÈQUE STANDARD DE PLANTUML

$linkRight(process, asset)
$linkDown(process, capability)
$linkDown(asset, capability)

@enduml

27.8.7 Experience

The Experience Facet is about the impact that the enterprise has on people and their lives through its
interactions.

@startuml
!include <edgy/edgy>

$experienceFacet(Experience) {
$task(Task, task)
$journey(Journey, journey)
$channel(Channel, channel)
}

$linkRight(task, journey)
$linkDown(task, channel)
$linkDown(journey, channel)

@enduml

27.8.8 Intersections

Intersections are lenses that connect facets and disciplines, such as organisation, product, and brand.

@startuml
!include <edgy/edgy>

$experienceFacet(Experience, experience)

Guide de référence du langage PlantUML (1.2025.0) 550 / 580

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]27 BIBLIOTHÈQUE STANDARD DE PLANTUML

$architectureFacet(Architecture, architecture)
$identityFacet(Identity, identity)

$organisationFacet(Organisation, org) {
$organisation(Organisation, organisation)
}

$brandFacet(Brand) {
$brand(Brand, brand)
}

$productFacet(Product){
$product(Product, product)
}

$flow(brand, identity, "represents/evokes")
$flow(brand, experience, "Supports/appears in")

$flowLeft(organisation, identity, "pursues/authors")
$flowRight(organisation, architecture, "has/performs")

$flow(product, experience, "serves/features in")
$linkUp(product, architecture, "requires/creates")

$flow(organisation, brand, "builds")
$flow(organisation, product, "makes")
$flowLeft(product, brand, "embodies")

@enduml

27.8.9 Alternative visual styling

Finally, there is also an alternative representation that focuses on rectangles with stereotypes. The
approach described above is 100% compatible. It can therefore be activated with a simple swap from
!include <edgy/edgy> to !include <edgy/edgy2>. This can sometimes be useful if the people involved

Guide de référence du langage PlantUML (1.2025.0) 551 / 580

27.9 Elastic library [elastic] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

do not immediately know the color codes and concrete meanings of the EDGY elements by heart. Also
color-blind people can benefit from this ;-)

@startuml
!include <edgy/edgy2>

$baseFacet("Basic elements") {
$people("People")
$outcome("Outcome")
$activity("Activity")
$object("Object")

}
@enduml

27.9 Elastic library [elastic]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/elastic
src https://github.com/Crashedmind/PlantUML-Elastic-icons
orig Elastic

The Elastic library consists of Elastic icons. It is similar in use to the AWS and Azure libraries (it used
the same tool to create them).

Use it by including the file that contains the sprite, eg: !include elastic/elastic_search/elastic_search>.
When imported, you can use the sprite as normally you would, using <$sprite_name>.

You may also include the common.puml file, eg: !include <elastic/common>, which contains helper
macros defined. With the common.puml imported, you can use the NAME//OF//SPRITE(parameters...)
macro.

Example of usage:

@startuml
!include <elastic/common>
!include <elastic/elasticsearch/elasticsearch>
!include <elastic/logstash/logstash>
!include <elastic/kibana/kibana>

ELASTICSEARCH(ElasticSearch, "Search and Analyze",database)
LOGSTASH(Logstash, "Parse and Transform",node)
KIBANA(Kibana, "Visualize",agent)

Logstash -right-> ElasticSearch: Transformed Data
ElasticSearch -right-> Kibana: Data to View
@enduml

Guide de référence du langage PlantUML (1.2025.0) 552 / 580

27.9 Elastic library [elastic] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

All Elastic Sprite Set

@startuml
'Adapted from https://github.com/Crashedmind/PlantUML-Elastic-icons/blob/master/All.puml

'Elastic stuff here
'================================

!include <elastic/common>
!include <elastic/apm/apm>
!include <elastic/app_search/app_search>
!include <elastic/beats/beats>
!include <elastic/cloud/cloud>
!include <elastic/cloud_in_kubernetes/cloud_in_kubernetes>
!include <elastic/code_search/code_search>
!include <elastic/ece/ece>
!include <elastic/eck/eck>
' Beware of the difference between Crashedmind and plantuml-stdlib version: with '_' usage!
!include <elastic/elasticsearch/elasticsearch>
!include <elastic/endpoint/endpoint>
!include <elastic/enterprise_search/enterprise_search>
!include <elastic/kibana/kibana>
!include <elastic/logging/logging>
!include <elastic/logstash/logstash>
!include <elastic/maps/maps>
!include <elastic/metrics/metrics>
!include <elastic/siem/siem>
!include <elastic/site_search/site_search>
!include <elastic/stack/stack>
!include <elastic/uptime/uptime>

skinparam agentBackgroundColor White

APM(apm)
APP_SEARCH(app_search)
BEATS(beats)
CLOUD(cloud)
CLOUD_IN_KUBERNETES(cloud_in_kubernetes)
CODE_SEARCH(code_search)
ECE(ece)
ECK(eck)
ELASTICSEARCH(elastic_search)
ENDPOINT(endpoint)
ENTERPRISE_SEARCH(enterprise_search)
KIBANA(kibana)
LOGGING(logging)
LOGSTASH(logstash)
MAPS(maps)
METRICS(metrics)

Guide de référence du langage PlantUML (1.2025.0) 553 / 580

27.10 Google Material Icons [material] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

SIEM(siem)
SITE_SEARCH(site_search)
STACK(stack)
UPTIME(uptime)
@enduml

27.10 Google Material Icons [material]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/material
src https://github.com/Templarian/MaterialDesign
orig Material Design Icons

This library consists of a free Material style icons from Google and other artists.

Use it by including the file that contains the sprite, eg: !include <material/ma_folder_move>. When
imported, you can use the sprite as normally you would, using <$ma_sprite_name>. Notice that this
library requires an ma_ prefix on sprites names, this is to avoid clash of names if multiple sprites have
the same name on different libraries.

You may also include the common.puml file, eg: !include <material/common>, which contains helper

Guide de référence du langage PlantUML (1.2025.0) 554 / 580

27.11 Kubernetes [kubernetes] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

macros defined. With the common.puml imported, you can use the MA_NAME_OF_SPRITE(parameters...)
macro, note again the use of the prefix MA_.

Example of usage:

@startuml
!include <material/common>
' To import the sprite file you DON'T need to place a prefix!
!include <material/folder_move>

MA_FOLDER_MOVE(Red, 1, dir, rectangle, "A label")
@enduml

Notes:

When mixing sprites macros with other elements you may get a syntax error if, for example, trying to
add a rectangle along with classes. In those cases, add { and } after the macro to create the empty
rectangle.

Example of usage:

@startuml
!include <material/common>
' To import the sprite file you DON'T need to place a prefix!
!include <material/folder_move>

MA_FOLDER_MOVE(Red, 1, dir, rectangle, "A label") {
}

class foo {
bar

}
@enduml

27.11 Kubernetes [kubernetes]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/kubernetes
src https://github.com/michiel/plantuml-kubernetes-sprites
orig Kubernetes

@startuml
!include <kubernetes/k8s-sprites-unlabeled-25pct>
package "Infrastructure" {

component "<$master>\nmaster" as master
component "<$etcd>\netcd" as etcd
component "<$node>\nnode" as node

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 555 / 580

27.12 Logos [logos] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.12 Logos [logos]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/logos
src https://github.com/plantuml-stdlib/gilbarbara-plantuml-sprites
orig Gil Barbara’s logos

This repository contains PlantUML sprites generated from Gil Barbara’s logos, which can easily be used
in PlantUML diagrams for nice visual aid.

@startuml
!include <logos/flask>
!include <logos/kafka>
!include <logos/kotlin>
!include <logos/cassandra>

title Gil Barbara's logos example

skinparam monochrome true

rectangle "<$flask>\nwebapp" as webapp
queue "<$kafka>" as kafka
rectangle "<$kotlin>\ndaemon" as daemon
database "<$cassandra>" as cassandra

webapp -> kafka
kafka -> daemon
daemon --> cassandra
@enduml

Guide de référence du langage PlantUML (1.2025.0) 556 / 580

27.12 Logos [logos] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

@startuml
scale 0.7
!include <logos/apple-pay>
!include <logos/dinersclub>
!include <logos/discover>
!include <logos/google-pay>
!include <logos/jcb>
!include <logos/maestro>
!include <logos/mastercard>
!include <logos/paypal>
!include <logos/unionpay>
!include <logos/visaelectron>
!include <logos/visa>
' ...

title Gil Barbara's logos example - **Payment Scheme**

actor customer
rectangle "<$apple-pay>" as ap
rectangle "<$dinersclub>" as dc
rectangle "<$discover>" as d
rectangle "<$google-pay>" as gp
rectangle "<$jcb>" as j
rectangle "<$maestro>" as ma
rectangle "<$mastercard>" as m
rectangle "<$paypal>" as p
rectangle "<$unionpay>" as up
rectangle "<$visa>" as v
rectangle "<$visaelectron>" as ve
rectangle "..." as etc

customer --> ap
customer ---> dc
customer --> d
customer ---> gp
customer --> j
customer ---> ma
customer --> m
customer ---> p
customer --> up
customer ---> v
customer --> ve
customer ---> etc

Guide de référence du langage PlantUML (1.2025.0) 557 / 580

27.13 Office [office] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

@enduml

27.13 Office [office]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/office
src https://github.com/Roemer/plantuml-office
orig

There are sprites (*.puml) and colored png icons available. Be aware that the sprites are all only
monochrome even if they have a color in their name (due to automatically generating the files). You can
either color the sprites with the macro (see examples below) or directly use the fully colored pngs. See
the following examples on how to use the sprites, the pngs and the macros.

Example of usage:

@startuml
!include <tupadr3/common>

!include <office/Servers/database_server>
!include <office/Servers/application_server>
!include <office/Concepts/firewall_orange>
!include <office/Clouds/cloud_disaster_red>

title Office Icons Example

package "Sprites" {
OFF_DATABASE_SERVER(db,DB)
OFF_APPLICATION_SERVER(app,App-Server)
OFF_FIREWALL_ORANGE(fw,Firewall)
OFF_CLOUD_DISASTER_RED(cloud,Cloud)
db <-> app
app <--> fw
fw <.left.> cloud

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 558 / 580

27.13 Office [office] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

@startuml
!include <tupadr3/common>

!include <office/servers/database_server>
!include <office/servers/application_server>
!include <office/Concepts/firewall_orange>
!include <office/Clouds/cloud_disaster_red>

' Used to center the label under the images
skinparam defaultTextAlignment center

title Extended Office Icons Example

package "Use sprite directly" {
[Some <$cloud_disaster_red> object]

}

package "Different macro usages" {
OFF_CLOUD_DISASTER_RED(cloud1)
OFF_CLOUD_DISASTER_RED(cloud2,Default with text)
OFF_CLOUD_DISASTER_RED(cloud3,Other shape,Folder)
OFF_CLOUD_DISASTER_RED(cloud4,Even another shape,Database)
OFF_CLOUD_DISASTER_RED(cloud5,Colored,Rectangle, red)
OFF_CLOUD_DISASTER_RED(cloud6,Colored background) #red

}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 559 / 580

27.14 Open Security Architecture (OSA) [osa] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

27.14 Open Security Architecture (OSA) [osa]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/osa
src https://github.com/Crashedmind/PlantUML-opensecurityarchitecture-iconshttps://github.com/Crashedmind/PlantUML-opensecurityarchitecture2-icons
orig https://www.opensecurityarchitecture.org

@startuml
'Adapted from https://github.com/Crashedmind/PlantUML-opensecurityarchitecture-icons/blob/master/all
scale .5
!include <osa/arrow/green/left/left>
!include <osa/arrow/yellow/right/right>
!include <osa/awareness/awareness>
!include <osa/contract/contract>
!include <osa/database/database>
!include <osa/desktop/desktop>
!include <osa/desktop/imac/imac>
!include <osa/device_music/device_music>
!include <osa/device_scanner/device_scanner>
!include <osa/device_usb/device_usb>
!include <osa/device_wireless_router/device_wireless_router>
!include <osa/disposal/disposal>
!include <osa/drive_optical/drive_optical>
!include <osa/firewall/firewall>
!include <osa/hub/hub>
!include <osa/ics/drive/drive>
!include <osa/ics/plc/plc>
!include <osa/ics/thermometer/thermometer>
!include <osa/id/card/card>
!include <osa/laptop/laptop>
!include <osa/lifecycle/lifecycle>
!include <osa/lightning/lightning>
!include <osa/media_flash/media_flash>
!include <osa/media_optical/media_optical>
!include <osa/media_tape/media_tape>
!include <osa/mobile/pda/pda>
!include <osa/padlock/padlock>
!include <osa/printer/printer>
!include <osa/site_branch/site_branch>
!include <osa/site_factory/site_factory>
!include <osa/vpn/vpn>

Guide de référence du langage PlantUML (1.2025.0) 560 / 580

27.14 Open Security Architecture (OSA) [osa] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

!include <osa/wireless/network/network>

rectangle "OSA" {
rectangle "Left:\n <$left>"
rectangle "Right:\n <$right>"
rectangle "Awareness:\n <$awareness>"
rectangle "Contract:\n <$contract>"
rectangle "Database:\n <$database>"
rectangle "Desktop:\n <$desktop>"
rectangle "Imac:\n <$imac>"
rectangle "Device_music:\n <$device_music>"
rectangle "Device_scanner:\n <$device_scanner>"
rectangle "Device_usb:\n <$device_usb>"
rectangle "Device_wireless_router:\n <$device_wireless_router>"
rectangle "Disposal:\n <$disposal>"
rectangle "Drive_optical:\n <$drive_optical>"
rectangle "Firewall:\n <$firewall>"
rectangle "Hub:\n <$hub>"
rectangle "Drive:\n <$drive>"
rectangle "Plc:\n <$plc>"
rectangle "Thermometer:\n <$thermometer>"
rectangle "Card:\n <$card>"
rectangle "Laptop:\n <$laptop>"
rectangle "Lifecycle:\n <$lifecycle>"
rectangle "Lightning:\n <$lightning>"
rectangle "Media_flash:\n <$media_flash>"
rectangle "Media_optical:\n <$media_optical>"
rectangle "Media_tape:\n <$media_tape>"
rectangle "Pda:\n <$pda>"
rectangle "Padlock:\n <$padlock>"
rectangle "Printer:\n <$printer>"
rectangle "Site_branch:\n <$site_branch>"
rectangle "Site_factory:\n <$site_factory>"
rectangle "Vpn:\n <$vpn>"
rectangle "Network:\n <$network>"
}
@enduml

Guide de référence du langage PlantUML (1.2025.0) 561 / 580

27.14 Open Security Architecture (OSA) [osa] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

@startuml
scale .5
!include <osa/user/audit/audit>
'beware of 'hat-sprite'
!include <osa/user/black/hat/hat-sprite>
!include <osa/user/blue/blue>
!include <osa/user/blue/security/specialist/specialist>
!include <osa/user/blue/sysadmin/sysadmin>
!include <osa/user/blue/tester/tester>
!include <osa/user/blue/tie/tie>
!include <osa/user/green/architect/architect>
!include <osa/user/green/business/manager/manager>
!include <osa/user/green/developer/developer>
!include <osa/user/green/green>
!include <osa/user/green/operations/operations>
!include <osa/user/green/project/manager/manager>
!include <osa/user/green/service/manager/manager>
!include <osa/user/green/warning/warning>
!include <osa/user/large/group/group>
!include <osa/users/blue/green/green>
!include <osa/user/white/hat/hat>

listsprites

Guide de référence du langage PlantUML (1.2025.0) 562 / 580

27.15 Tupadr3 library [tupadr3] 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

@enduml

27.15 Tupadr3 library [tupadr3]
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/tupadr3
src https://github.com/tupadr3/plantuml-icon-font-sprites
orig https://github.com/tupadr3/plantuml-icon-font-sprites#icon-sets

This library contains several libraries of icons (including Devicons and Font Awesome).

Use it by including the file that contains the sprite, eg: !include <font-awesome/align_center>.
When imported, you can use the sprite as normally you would, using <$sprite_name>.

You may also include the common.puml file, eg: !include <font-awesome/common>, which contains
helper macros defined. With the common.puml imported, you can use the NAME_OF_SPRITE(parameters...)
macro.

Example of usage:

@startuml
!include <tupadr3/common>
!include <tupadr3/font-awesome/server>
!include <tupadr3/font-awesome/database>

title Styling example

FA_SERVER(web1,web1) #Green
FA_SERVER(web2,web2) #Yellow
FA_SERVER(web3,web3) #Blue
FA_SERVER(web4,web4) #YellowGreen

FA_DATABASE(db1,LIVE,database,white) #RoyalBlue
FA_DATABASE(db2,SPARE,database) #Red

db1 <--> db2

web1 <--> db1
web2 <--> db1
web3 <--> db1
web4 <--> db1

Guide de référence du langage PlantUML (1.2025.0) 563 / 580

27.16 Bibliothèque AWS 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

@enduml

@startuml
!include <tupadr3/common>
!include <tupadr3/devicons/mysql>

DEV_MYSQL(db1)
DEV_MYSQL(db2,label of db2)
DEV_MYSQL(db3,label of db3,database)
DEV_MYSQL(db4,label of db4,database,red) #DeepSkyBlue
@enduml

27.16 Bibliothèque AWS
Type Link
stdlib https://github.com/plantuml/plantuml-stdlib/tree/master/aws
src https://github.com/milo-minderbinder/AWS-PlantUML
orig https://aws.amazon.com/en/architecture/icons/

Warning: We are thinking about deprecating this library.

So you should probably use <awslib> instead (see above).

Guide de référence du langage PlantUML (1.2025.0) 564 / 580

27.16 Bibliothèque AWS 27 BIBLIOTHÈQUE STANDARD DE PLANTUML

�hr��

La bibliothèque AWS est composée des icônes AWS en deux tailles différentes.

Pour l’utiliser, il vous vaut inclure le ficheier qui contient le sprite (ex: !include <aws/Storage/AmazonS3/AmazonS3>).
Une fois importé, vous pouvez utiliser le sprite normallement en l’appelant de la manière suivante
<$nom_du_sprite>.

Vous pouvez aussi inclure le fichier common.puml qui contient plusieurs macros utiles avec la com-
mande !include <aws/common>. Avec ce fichier importé, vous pouvez par exmeple appeler la macro
”NOM_DU_SPRITE(parametres...).

Exemple d’utilisation :

@startuml
!include <aws/common>
!include <aws/Storage/AmazonS3/AmazonS3>
!include <aws/Storage/AmazonS3/bucket/bucket>

AMAZONS3(s3_internal)
AMAZONS3(s3_partner,"Vendor's S3")
s3_internal <- s3_partner
@enduml

Guide de référence du langage PlantUML (1.2025.0) 565 / 580

CONTENTS CONTENTS

Contents
1 Diagramme de séquence 1

1.1 Exemples de base . 1
1.2 Déclaration d’un participant . 2
1.3 Déclaration des participants sur plusieurs lignes . 4
1.4 Caractères non alphanumérique dans les participants . 4
1.5 Message à soi-même . 5
1.6 Alignement du texte . 5

1.6.1 Texte du message de réponse sous la flèche . 5
1.7 Autre style de flèches . 6
1.8 Changer la couleur des flèches . 6
1.9 Numérotation séquentielle des messages . 7
1.10 Titre, en-tête et pied de page de la page . 10
1.11 Découper un diagramme . 11
1.12 Regrouper les messages (cadres UML) . 11
1.13 Étiquette secondaire de groupe . 12
1.14 Note sur les messages . 13
1.15 Encore plus de notes . 14
1.16 Changer l’aspect des notes . 15
1.17 Note sur tous les participants [à travers] . 15
1.18 Plusieurs notes alignées au même niveau [/] . 16
1.19 Créole (langage de balisage léger) et HTML . 17
1.20 Diviseur ou séparateur . 18
1.21 Référence . 18
1.22 Retard . 19
1.23 Habillage du texte . 19
1.24 Séparation verticale . 20
1.25 Lignes de vie . 20
1.26 Retour . 22
1.27 Création d’un participant . 22
1.28 Syntaxe raccourcie pour l’activation, la désactivation, la création 23
1.29 Messages entrant et sortant . 24
1.30 Flèches courtes pour les messages entrants et sortants . 25
1.31 Anchors and Duration . 26
1.32 Stéréotypes et décoration . 27
1.33 Position of the stereotypes . 28

1.33.1 Top postion (by default) . 28
1.33.2 Bottom postion . 28

1.34 Plus d’information sur les titres . 28
1.35 Cadre pour les participants . 30
1.36 Supprimer les participants en pied de page . 30
1.37 Personnalisation . 30
1.38 Changer le padding . 33
1.39 Appendix: Examples of all arrow type . 33

1.39.1 Normal arrow . 33
1.39.2 Itself arrow . 34
1.39.3 Incoming and outgoing messages (with ’[’, ’]’) . 36
1.39.4 Incoming messages (with ’[’) . 36
1.39.5 Outgoing messages (with ’]’) . 38
1.39.6 Short incoming and outgoing messages (with ’?’) 39
1.39.7 Short incoming (with ’?’) . 39
1.39.8 Short outgoing (with ’?’) . 40

1.40 SkinParameter spécifique . 41
1.40.1 Par défaut . 41
1.40.2 LifelineStrategy . 42
1.40.3 style strictuml . 42

1.41 Masquer un participant non lié . 43

Guide de référence du langage PlantUML (1.2025.0) 566 / 580

CONTENTS CONTENTS

1.42 Colorier un groupe de message . 43
1.43 Mainframe . 44
1.44 Slanted or odd arrows . 44
1.45 Parallel messages (with teoz) . 46

2 Diagramme de cas d’utilisation 47
2.1 Cas d’utilisation . 47
2.2 Acteurs . 47
2.3 Changer le style d’acteur . 48

2.3.1 Stick man (par défaut) . 48
2.3.2 Homme creux . 49

2.4 Description des cas d’utilisation . 49
2.5 Utiliser un package . 50
2.6 Exemples très simples . 51
2.7 Héritage . 52
2.8 Notes . 52
2.9 Stéréotypes . 53
2.10 Changer les directions des flèches . 53
2.11 Découper les diagrames . 54
2.12 De droite à gauche . 55
2.13 La commande Skinparam . 56
2.14 Exemple complet . 56
2.15 Business Use Case . 57

2.15.1 Business Use Case . 57
2.15.2 Acteur commercial . 57

2.16 Modifier la couleur et le style des flèches (style en ligne) 58
2.17 Modifier la couleur et le style d’un élément (style en ligne) 58
2.18 Afficher les données JSON sur le diagramme Usecase . 59

2.18.1 Exemple simple . 59

3 Diagramme de classes 60
3.1 Élément déclaratif . 60
3.2 Relations entre classes . 61
3.3 Libellés sur les relations . 62
3.4 Caractères non alphabétiques dans les noms d’éléments et les étiquettes de relations . . . 63

3.4.1 Commencer un nom avec $. 63
3.5 Ajouter des méthodes . 63
3.6 Définition de la visibilité . 64
3.7 Abstrait et statique . 66
3.8 Corps de classe avancé . 66
3.9 Notes et stéréotypes . 67
3.10 Plus de notes . 68
3.11 Note sur un champ (champ, attribut, membre) ou une méthode 69

3.11.1 Note sur un champ ou une méthode . 69
3.11.2 Note sur une méthode de même nom . 69

3.12 Note sur les liens . 70
3.13 Classe et interface abstraites . 70
3.14 Masquer les attributs et les méthodes . 71
3.15 Masquer les classes . 72
3.16 Supprimer des classes . 73
3.17 Hide, Remove or Restore tagged element or wildcard . 73
3.18 Masquer ou supprimer une classe non liée . 75
3.19 Utilisation de la généricité . 76
3.20 Caractère spécial . 76
3.21 Packages . 76
3.22 Modèle de paquet . 77
3.23 Les espaces de nommage . 78
3.24 Creation automatique d’espace de nommage . 79
3.25 Interface boucle . 80

Guide de référence du langage PlantUML (1.2025.0) 567 / 580

CONTENTS CONTENTS

3.26 Changer la direction . 80
3.27 Classes d’association . 82
3.28 Association sur la même classe . 83
3.29 Personnalisation . 83
3.30 Stéréotypes Personnalisés . 84
3.31 Dégradé de couleurs . 85
3.32 Aide pour la mise en page . 85
3.33 Découper les grands diagrammes . 86
3.34 Extension et implementation [extends, implements] . 87
3.35 Relations entre crochets (liens ou flèches) style . 87

3.35.1 Style de ligne . 87
3.35.2 Couleur de ligne . 88
3.35.3 Épaisseur de ligne . 89
3.35.4 Mélange . 90

3.36 Modifier la couleur et le style d’une relation (lien ou flèche) (style en ligne) 90
3.37 Modifier la couleur et le style d’une classe (style en ligne) 91
3.38 Flèches de/vers les membres de la classe . 92
3.39 Regroupement de flèche d’héritage . 93

3.39.1 GroupInheritance 1 (pas de regroupement) . 93
3.39.2 GroupInheritance 2 (regroupement à partir de 2) 93
3.39.3 GroupInheritance 3 (regroupement uniquement à partir de 3) 94
3.39.4 GroupInheritance 4 (regroupement uniquement à partir de 4) 94

3.40 Display JSON Data on Class or Object diagram . 95
3.40.1 Simple example . 95

3.41 Packages and Namespaces Enhancement . 96
3.42 Qualified associations . 97

3.42.1 Minimal example . 97
3.42.2 Another example . 97

3.43 Change diagram orientation . 97
3.43.1 Top to bottom (by default) . 97
3.43.2 With Graphviz (layout engine by default) . 97
3.43.3 With Smetana (internal layout engine) . 98
3.43.4 Left to right . 99
3.43.5 With Graphviz (layout engine by default) . 99
3.43.6 With Smetana (internal layout engine) . 102

4 Diagramme d’objets 104
4.1 Définition des objets . 104
4.2 Relations entre les objets . 104
4.3 Association d’objects . 105
4.4 Ajout de champs . 105
4.5 Caractéristiques communes avec les diagrammes de classes 106
4.6 Table de correspondance ou tableau associatif . 106
4.7 Program (or project) evaluation and review technique (PERT) with map 108
4.8 Display JSON Data on Class or Object diagram . 109

4.8.1 Simple example . 109

5 Diagrammes d’activité (ancienne syntaxe) 110
5.1 Action simple . 110
5.2 Texte sur les flèches . 110
5.3 Changer la direction des flèches . 111
5.4 Branches . 111
5.5 Encore des branches . 112
5.6 Synchronisation . 113
5.7 Description détaillée . 114
5.8 Notes . 115
5.9 Partition . 115
5.10 Paramètre de thème . 116
5.11 Octogone . 117

Guide de référence du langage PlantUML (1.2025.0) 568 / 580

CONTENTS CONTENTS

5.12 Exemple complet . 117

6 Diagramme d’activité (nouvelle syntaxe) 120
6.0.1 Avantages de la nouvelle syntaxe . 120
6.0.2 Transition vers la nouvelle syntaxe . 120

6.1 Action simple . 120
6.2 Départ/Arrêt [start, stop, end] . 120
6.3 Conditionnel [if, then, else] . 121

6.3.1 Plusieurs conditions (en mode horizontal) . 122
6.3.2 Plusieurs conditions (en mode vertical) . 123

6.4 Switch and case [switch, case, endswitch] . 124
6.5 Arrêt après une action au sein d’une condition [kill, detach] 125
6.6 Boucle de répétition [repeat, repeatwhile, backward] . 126
6.7 Interruption d’une boucle [break] . 127
6.8 Goto and Label Processing [label, goto] . 128
6.9 Boucle « tant que » [while] . 129
6.10 Traitement parallèle [fork, fork again, end fork, end merge] 130

6.10.1 Simple fork . 130
6.10.2 fork avec fusion finale . 130
6.10.3 Label sur end fork (ou UML joinspec) . 131
6.10.4 Autre exemple . 132

6.11 Traitement fractionné . 133
6.11.1 Split . 133
6.11.2 Fractionnement de l’entrée (multidébut) . 133
6.11.3 Fractionnement de la sortie (plusieurs extrémités) 134

6.12 Notes . 135
6.13 Couleurs . 137
6.14 Lignes sans pointe de flèches . 138
6.15 Flèches . 138
6.16 Connecteurs . 139
6.17 Connecteurs en couleur . 139
6.18 Regroupement ou partition . 140

6.18.1 Groupe . 140
6.18.2 Partition . 141
6.18.3 Groupe, partition, paquet, rectangle ou carte . 143

6.19 Swimlanes . 144
6.20 Détacher ou arrêter [detach, kill] . 147
6.21 SDL (Specification and Description Language) . 148
6.22 Exemple complet . 149
6.23 Style de condition . 151

6.23.1 Style intérieur (par défaut) . 151
6.23.2 Style diamant . 152
6.23.3 Style InsideDiamond (ou Foo1) . 153

6.24 Style de fin de condition . 154
6.24.1 Style diamant (par défaut) . 154
6.24.2 Style ligne horizontale (hline) . 155

6.25 Avec le style (global) . 156
6.25.1 Sans style (par défaut) . 156
6.25.2 Avec style . 156

7 Diagramme de composants 159
7.1 Composants . 159
7.2 Interfaces . 159
7.3 Exemple de base . 160
7.4 Utilisation des notes . 160
7.5 Regroupement de composants . 161
7.6 Changement de direction des flèches . 162
7.7 Utiliser la notation UML2 . 164
7.8 Utiliser la notation UML1 . 164

Guide de référence du langage PlantUML (1.2025.0) 569 / 580

CONTENTS CONTENTS

7.9 Utiliser le style rectangle (supprime toute notation UML) 164
7.10 Description longue . 165
7.11 Couleurs individuelles . 165
7.12 Sprites et stéréotypes . 165
7.13 Skinparam . 166
7.14 Paramètre de style spécifique . 167

7.14.1 componentStyle . 167
7.15 Masquer ou supprimer un composant non lié . 169
7.16 Masquer, supprimer ou restaurer un composant balisé ou un joker 170
7.17 Display JSON Data on Component diagram . 171

7.17.1 Simple example . 171
7.18 Port [port, portIn, portOut] . 172

7.18.1 Port . 172
7.18.2 PortIn . 173
7.18.3 PortOut . 173
7.18.4 Mixing PortIn & PortOut . 174

8 Diagramme de déploiement 176
8.1 Déclarer un élément . 176
8.2 Declaring element (using short form) . 178

8.2.1 Actor . 178
8.2.2 Component . 179
8.2.3 Interface . 179
8.2.4 Usecase . 179

8.3 Linking or arrow . 179
8.4 Bracketed arrow style . 182

8.4.1 Line style . 182
8.4.2 Line color . 183
8.4.3 Line thickness . 183
8.4.4 Mix . 184

8.5 Change arrow color and style (inline style) . 184
8.6 Change element color and style (inline style) . 185
8.7 Nestable elements . 186
8.8 Packages and nested elements . 186

8.8.1 Example with one level . 186
8.8.2 Other example . 187
8.8.3 Full nesting . 188

8.9 Alias . 193
8.9.1 Simple alias with as . 193
8.9.2 Examples of long alias . 193

8.10 Round corner . 195
8.11 Specific SkinParameter . 195

8.11.1 roundCorner . 195
8.12 Appendix: All type of arrow line . 196
8.13 Appendix: All type of arrow head or ’0’ arrow . 197

8.13.1 Type of arrow head . 197
8.13.2 Type of ’0’ arrow or circle arrow . 198

8.14 Appendix: Test of inline style on all element . 199
8.14.1 Simple element . 199
8.14.2 Nested element . 200
8.14.3 Without sub-element . 200
8.14.4 With sub-element . 201

8.15 Appendix: Test of style on all element . 202
8.15.1 Simple element . 202
8.15.2 Global style (on componentDiagram) . 202
8.15.3 Style for each element . 203
8.15.4 Nested element (without level) . 207
8.15.5 Global style (on componentDiagram) . 207

Guide de référence du langage PlantUML (1.2025.0) 570 / 580

CONTENTS CONTENTS

8.15.6 Style for each nested element . 208
8.15.7 Nested element (with one level) . 210
8.15.8 Global style (on componentDiagram) . 210
8.15.9 Style for each nested element . 211

8.16 Appendix: Test of stereotype with style on all element . 213
8.16.1 Simple element . 213

8.17 Display JSON Data on Deployment diagram . 215
8.17.1 Simple example . 215

8.18 Mixing Deployment (Usecase, Component, Deployment) element within a Class or Object
diagram . 215
8.18.1 Mixing all elements . 215

8.19 Port [port, portIn, portOut] . 217
8.19.1 Port . 217
8.19.2 PortIn . 218
8.19.3 PortOut . 218
8.19.4 Mixing PortIn & PortOut . 219

8.20 Change diagram orientation . 220
8.20.1 Top to bottom (by default) . 220
8.20.2 With Graphviz (layout engine by default) . 220
8.20.3 With Smetana (internal layout engine) . 221
8.20.4 Left to right . 222
8.20.5 With Graphviz (layout engine by default) . 222
8.20.6 With Smetana (internal layout engine) . 223

9 Diagramme d’état 225
9.1 Exemple simple . 225
9.2 Autre rendu . 225
9.3 État composite . 226

9.3.1 Sous-état interne . 226
9.3.2 Lien entre sous-états . 227

9.4 Nom long . 228
9.5 Historique de sous-état [[H], [H*]] . 229
9.6 États parallèles [fork, join] . 229
9.7 États concurrents [–, ||] . 230

9.7.1 Séparateur horizontal -- . 230
9.7.2 Séparateur vertical || . 231

9.8 Conditionnel [choice] . 232
9.9 Exemple avec tous les stéréotypes [choice, fork, join, end] 232
9.10 Petits cercles [entryPoint, exitPoint] . 234
9.11 Petits carrés [inputPin, outputPin] . 234
9.12 Multiples petits carrés [expansionInput, expansionOutput] 235
9.13 Direction des flèches . 236
9.14 Changer la couleur ou le style des flèches . 237
9.15 Note . 237
9.16 Note sur un lien . 238
9.17 Plus de notes . 238
9.18 Changer les couleurs localement [Inline color] . 239
9.19 Skinparam . 240

9.19.1 Test de tous les skinparam spécifiques aux diagrammes d’état: 241
9.20 Changement de style . 241
9.21 Modifier la couleur et le style d’un état (style en ligne) . 242
9.22 Alias . 244
9.23 Display JSON Data on State diagram . 245

9.23.1 Simple example . 245
9.24 State description . 245
9.25 Style for Nested State Body . 246

10 Diagramme de temps 247
10.1 Définitions des participants . 247

Guide de référence du langage PlantUML (1.2025.0) 571 / 580

CONTENTS CONTENTS

10.2 Horloge et signaux binaires . 247
10.3 Ajout de messages . 248
10.4 Référence relative de temps . 248
10.5 Points d’ancrage . 249
10.6 Définition participant par participant . 250
10.7 Choix du zoom . 250
10.8 État initial . 251
10.9 État complexe . 251
10.10Hidden state . 252
10.11Masquer l’axe du temps . 252
10.12Utilisation de l’heure et de la date . 253
10.13Change Date Format . 254
10.14Manage time axis labels . 254

10.14.1Label on each tick (by default) . 254
10.14.2Manual label (only when the state changes) . 255

10.15Ajout de contraintes . 256
10.16Période surlignée . 256
10.17Using notes . 257
10.18Ajout de textes . 258
10.19Exemple complet . 259
10.20Exemple numérique . 260
10.21Ajout de couleur . 261
10.22Using (global) style . 262

10.22.1Without style (by default) . 262
10.22.2With style . 262

10.23Applying Colors to specific lines . 263
10.24Compact mode . 264

10.24.1By default . 264
10.24.2Global mode with mode compact . 265
10.24.3Local mode with only compact on element . 265

10.25Scaling analog signal . 266
10.25.1Without scaling: 0-max (by default) . 266
10.25.2With scaling: min-max . 267

10.26Customise analog signal . 267
10.26.1Without any customisation (by default) . 267
10.26.2With customisation (on scale, ticks and height) . 268

10.27Order state of robust signal . 268
10.27.1Without order (by default) . 268
10.27.2With order . 269
10.27.3With order and label . 269

10.28Defining a timing diagram . 270
10.28.1By Clock (@clk) . 270
10.28.2By Signal (@S) . 270
10.28.3By Time (@time) . 271

10.29Annotate signal with comment . 272

11 Display JSON Data 274
11.1 Complex example . 274
11.2 Highlight parts . 275
11.3 Using different styles for highlight . 275
11.4 JSON basic element . 276

11.4.1 Synthesis of all JSON basic element . 276
11.5 JSON array or table . 277

11.5.1 Array type . 277
11.5.2 Minimal array or table . 278
11.5.3 Number array . 278
11.5.4 String array . 278
11.5.5 Boolean array . 278

Guide de référence du langage PlantUML (1.2025.0) 572 / 580

CONTENTS CONTENTS

11.6 JSON numbers . 278
11.7 JSON strings . 279

11.7.1 JSON Unicode . 279
11.7.2 JSON two-character escape sequence . 279

11.8 Minimal JSON examples . 280
11.9 Empty table or list . 281
11.10Using (global) style . 281

11.10.1Without style (by default) . 281
11.10.2With style . 282

11.11Display JSON Data on Class or Object diagram . 283
11.11.1Simple example . 283
11.11.2Complex example: with all JSON basic element . 283

11.12Display JSON Data on Deployment (Usecase, Component, Deployment) diagram 284
11.12.1Simple example . 284

11.13Display JSON Data on State diagram . 285
11.13.1Simple example . 285

11.14Creole on JSON . 286

12 Display YAML Data 288
12.1 Complex example . 288
12.2 Specific key (with symbols or unicode) . 289
12.3 Highlight parts . 289

12.3.1 Normal style . 289
12.3.2 Customised style . 290

12.4 Using different styles for highlight . 290
12.5 Using (global) style . 291

12.5.1 Without style (by default) . 291
12.5.2 With style . 292

12.6 Creole on YAML . 293

13 Diagramme de réseau avec nwdiag 295
13.1 Diagramme simple . 295

13.1.1 Définir un réseau . 295
13.1.2 Définir certains éléments ou serveurs sur un réseau 295
13.1.3 Exemple complet . 295

13.2 Define multiple addresses . 296
13.3 Grouping nodes . 297

13.3.1 Define group inside network definitions . 297
13.3.2 Define group outside of network definitions . 298
13.3.3 Define several groups on same network . 298
13.3.4 Example with 2 group . 298
13.3.5 Example with 3 groups . 299

13.4 Extended Syntax (for network or group) . 300
13.4.1 Network . 300
13.4.2 Group . 301

13.5 Using Sprites . 302
13.6 Using OpenIconic . 303
13.7 Same nodes on more than two networks . 304
13.8 Peer networks . 305
13.9 Peer networks and group . 305

13.9.1 Without group . 305
13.9.2 Group on first . 306
13.9.3 Group on second . 307
13.9.4 Group on third . 308

13.10Add title, caption, header, footer or legend on network diagram 309
13.11With or without shadow . 310

13.11.1With shadow (by default) . 310
13.11.2Without shadow . 310

13.12Change width of the networks . 311

Guide de référence du langage PlantUML (1.2025.0) 573 / 580

CONTENTS CONTENTS

13.12.1First example . 311
13.12.2Second example . 313

13.13Other internal networks . 317
13.14Using (global) style . 319

13.14.1Without style (by default) . 319
13.14.2With style . 320

13.15Appendix: Test of all shapes on Network diagram (nwdiag) 321

14 Salt (Wireframe) 324
14.1 Composants de base . 324
14.2 Text area . 324
14.3 Ouvrir, fermer une liste déroulante . 325
14.4 Utilisation de la grille [| et #, !, -, +] . 326
14.5 Regroupement de champs . 326
14.6 Utilisation des séparateurs . 327
14.7 Arbre (structure arborescente) [T] . 327
14.8 Arbre et Tableau [T] . 328
14.9 Accolades délimitantes [{, }] . 329
14.10Ajout d’onglet [/] . 329
14.11Utilisation de menu [*] . 330
14.12Tableaux avancés . 332
14.13Barres de défilement [S, SI, S-] . 332
14.14Couleurs . 333
14.15Creole on Salt . 333
14.16Pseudo sprite [«, »] . 335
14.17OpenIconic . 336
14.18Ajouter un titre, un en-tête, un pied de page, une légende 336
14.19Zoom, DPI . 337

14.19.1Sans zoom (par défaut) . 337
14.19.2Scale . 337
14.19.3DPI . 338

14.20Include Salt ”on activity diagram” . 338
14.21Include salt ”on while condition of activity diagram” . 340
14.22Include salt ”on repeat while condition of activity diagram” 341
14.23Skinparam . 342
14.24Style . 343

15 ArchiMate 344
15.1 Mot-clé Archimate . 344
15.2 Jonctions Archimate . 344
15.3 Exemple 1 . 345
15.4 Exemple 2 . 346
15.5 Liste des sprites possibles . 347
15.6 ArchiMate Macros . 347

15.6.1 Archimate Macros and Library . 347
15.6.2 Archimate elements . 347
15.6.3 Archimate relationships . 348
15.6.4 Appendice: Examples of all Archimate RelationTypes 349

16 Diagramme de Gantt 353
16.1 Déclaration des tâches . 353

16.1.1 Charge de travail . 353
16.1.2 Start . 354
16.1.3 Fin . 354
16.1.4 Début/Fin . 355

16.2 Déclaration sur une ligne (avec la conjonction et) . 355
16.3 Ajout de contraintes . 355
16.4 Noms courts . 356
16.5 Tasks with same name . 356

Guide de référence du langage PlantUML (1.2025.0) 574 / 580

CONTENTS CONTENTS

16.6 Personnaliser les couleurs . 357
16.7 État d’achèvement . 357

16.7.1 Ajout du pourcentage d’achèvement selon . 357
16.7.2 Changer la couleur de l’achèvement (par style) . 357

16.8 Jalon . 358
16.8.1 Jalon relatif (utilisation de contraintes) . 359
16.8.2 Jalon absolu (utilisation d’une date fixe) . 359
16.8.3 Jalon de fin de tâches maximum . 359

16.9 Hyperliens . 359
16.10Calendrier . 360
16.11Journées en couleur . 360
16.12Changement d’échelle . 360

16.12.1Daily (par défaut) . 361
16.12.2Hebdomadaire . 361
16.12.3Mensuel . 362
16.12.4Trimestriel . 362
16.12.5Annuel . 363

16.13Zoom (exemple pour toute l’échelle) . 363
16.13.1Zoom sur l’échelle hebdomadaire . 363
16.13.2Sans zoom . 363
16.13.3Avec zoom . 363
16.13.4Zoom sur l’échelle hebdomadaire . 364
16.13.5Sans zoom . 364
16.13.6Avec zoom . 364
16.13.7Zoom sur l’échelle mensuelle . 365
16.13.8Sans zoom . 365
16.13.9Avec zoom . 365
16.13.10Zoom sur l’échelle trimestrielle . 365
16.13.11Sans zoom . 365
16.13.12Avec zoom . 366
16.13.13Zoom sur l’échelle annuelle . 366
16.13.14Sans zoom . 366
16.13.15Avec zoom . 366

16.14Weekscale with Weeknumbers or Calendar Date . 367
16.14.1With Weeknumbers (by default) . 367
16.14.2With Weeknumbers (starting from 1) . 367
16.14.3With Calendar Date . 367

16.15Jour non travaillé . 368
16.16Définition d’une semaine en fonction des jours fermés . 368
16.17Working days . 369
16.18Succession de tâches simplifiée . 369
16.19Travailler avec des ressources . 370
16.20Hide resources . 371

16.20.1Without any hiding (by default) . 371
16.20.2Hide resources names . 371
16.20.3Hide resources footbox . 371
16.20.4Hide the both (resources names and resources footbox) 372

16.21Séparateur horizontal . 372
16.22Vertical Separator . 372
16.23Exemple complexe . 373
16.24Comments . 373
16.25Avec style . 373

16.25.1Sans style (par défaut) . 373
16.25.2Avec style . 374
16.25.3Avec style (exemple complet) . 375
16.25.4Nettoyer le style . 377

16.26Ajouter des notes . 378
16.27Pause des tâches . 380

Guide de référence du langage PlantUML (1.2025.0) 575 / 580

CONTENTS CONTENTS

16.28Modifier les couleurs des liens . 381
16.29Tâches ou jalons sur la même ligne . 382
16.30Mise en avant aujourd’hui . 382
16.31Tâche entre deux jalons . 382
16.32Grammar and verbal form . 383
16.33Ajouter un titre, un en-tête, un pied de page, une légende ou une légende 383
16.34Add color on legend . 383
16.35Suppression des boîtes de pied (exemple pour toutes les échelles) 384
16.36Langue du calendrier . 386

16.36.1English (en, par défaut) . 386
16.36.2Allemand (de) . 386
16.36.3 Japonais (ja) . 387
16.36.4Chinois (zh) . 387
16.36.5Coréen (ko) . 387

16.37Supprimer des tâches ou des jalons . 388
16.38Start a project, a task or a milestone a number of days before or after today 388
16.39Change Label position . 389

16.39.1The labels are near elements (by default) . 389
16.39.2Label on first column . 389
16.39.3Label on last column . 390

17 MindMap 392
17.1 Syntaxe OrgMode . 392
17.2 Syntaxe Markdown . 393
17.3 Notation arithmétique [+, -] . 393
17.4 Multilignes . 394
17.5 Multiroot Mindmap . 395
17.6 Couleurs . 395

17.6.1 Avec couleur en ligne . 395
17.6.2 Avec couleur de style . 396

17.7 Masquer les bordures [_] . 398
17.8 Diagramme multi-directionnel . 399
17.9 Change (whole) diagram orientation . 400

17.9.1 Left to right direction (by default) . 400
17.9.2 Top to bottom direction . 400
17.9.3 Right to left direction . 401
17.9.4 Bottom to top direction . 401

17.10Exemple complet . 401
17.11Changement de style . 402

17.11.1nœud, profondeur . 402
17.11.2 sans boîte . 403

17.12Word Wrap . 404
17.13Creole on Mindmap diagram . 405

18 Structure de répartition du travail (WBS) 408
18.1 Syntaxe OrgMode . 408
18.2 Changement de direction [<, >] . 409
18.3 Notation arithmétique [+, -] . 409
18.4 Multi-lignes . 410
18.5 Masquer les bordures [_] . 410
18.6 Colors (with inline or style color) . 411
18.7 Using style . 413
18.8 Word Wrap . 414
18.9 Add arrows between WBS elements . 415
18.10Creole on WBS diagram . 416

19 Mathématiques 419
19.1 Diagramme indépendant . 420
19.2 Comment cela fonctionne ? . 420

Guide de référence du langage PlantUML (1.2025.0) 576 / 580

CONTENTS CONTENTS

20 Information Engineering Diagrams 421
20.1 Information Engineering Relations . 421
20.2 Entities . 421
20.3 Complete Example . 422

21 Commandes communes dans PlantUML 425
21.0.1 Global Elements . 425
21.0.2 Description de la syntaxe créole . 425
21.0.3 Commande de contrôle du style . 425

21.1 Comments . 425
21.1.1 Simple comment . 425
21.1.2 Block comment . 425
21.1.3 Full example . 426

21.2 Zoom . 426
21.3 Title . 427
21.4 Caption . 428
21.5 Footer and header . 428
21.6 Legend the diagram . 429
21.7 Appendix: Examples on all diagram . 429

21.7.1 Activity . 429
21.7.2 Archimate . 430
21.7.3 Class . 431
21.7.4 Component, Deployment, Use-Case . 431
21.7.5 Gantt project planning . 432
21.7.6 Object . 432
21.7.7 MindMap . 433
21.7.8 Network (nwdiag) . 434
21.7.9 Sequence . 434
21.7.10State . 435
21.7.11Timing . 436
21.7.12Work Breakdown Structure (WBS) . 436
21.7.13Wireframe (SALT) . 437

21.8 Appendix: Examples on all diagram with style . 438
21.8.1 Activity . 438
21.8.2 Archimate . 440
21.8.3 Class . 441
21.8.4 Component, Deployment, Use-Case . 443
21.8.5 Gantt project planning . 444
21.8.6 Object . 446
21.8.7 MindMap . 447
21.8.8 Network (nwdiag) . 448
21.8.9 Sequence . 450
21.8.10State . 451
21.8.11Timing . 453
21.8.12Work Breakdown Structure (WBS) . 454
21.8.13Wireframe (SALT) . 455

21.9 Mainframe . 456
21.10Appendix: Examples of Mainframe on all diagram . 457

21.10.1Activity . 457
21.10.2Archimate . 457
21.10.3Class . 458
21.10.4Component, Deployment, Use-Case . 458
21.10.5Gantt project planning . 458
21.10.6Object . 459
21.10.7MindMap . 459
21.10.8Network (nwdiag) . 459
21.10.9Sequence . 460
21.10.10State . 460

Guide de référence du langage PlantUML (1.2025.0) 577 / 580

CONTENTS CONTENTS

21.10.11Timing . 460
21.10.12Work Breakdown Structure (WBS) . 461
21.10.13Wireframe (SALT) . 461

21.11Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram 462
21.11.1Activity . 462
21.11.2Archimate . 462
21.11.3Class . 463
21.11.4Component, Deployment, Use-Case . 464
21.11.5Gantt project planning . 464
21.11.6Object . 465
21.11.7MindMap . 466
21.11.8Network (nwdiag) . 466
21.11.9Sequence . 467
21.11.10State . 468
21.11.11Timing . 468
21.11.12Work Breakdown Structure (WBS) . 469
21.11.13Wireframe (SALT) . 470

22 Créole 472
22.1 Texte mis en évidence . 472
22.2 Listes . 472
22.3 Caractère d’échappement . 473
22.4 Entêtes . 473
22.5 Emoji . 474

22.5.1 Unicode block 26 . 475
22.6 Lignes horizontales . 475
22.7 Links . 476
22.8 Code . 476
22.9 Tableau . 477

22.9.1 Créer un tableau . 477
22.9.2 Ajouter une couleur sur les lignes ou les cellules . 478
22.9.3 Ajouter une couleur sur la bordure et le texte . 478
22.9.4 Pas de bordure ou même couleur que le fond . 478
22.9.5 En-tête en gras ou non . 479

22.10Arbre . 479
22.11Caractères spéciaux . 481
22.12Tag HTML . 481

22.12.1Common HTML element . 482
22.12.2Subscript and Superscript element [sub, sup] . 483

22.13OpenIconic . 483
22.14Annexe : Exemples de ” liste créole ” sur tous les diagrammes 484

22.14.1Activité . 484
22.14.2Classe . 485
22.14.3Composant, Déploiement, Cas d’utilisation . 486
22.14.4Planification de projet Gantt . 487
22.14.5Object . 487
22.14.6MindMap . 488
22.14.7Réseau (nwdiag) . 488
22.14.8Note . 489
22.14.9Sequence . 489
22.14.10State . 489

22.15Annexe : Exemples de ” lignes horizontales créoles ” sur tous les diagrammes 489
22.15.1Activité . 489
22.15.2Classe . 490
22.15.3Composant, déploiement, cas d’utilisation . 491
22.15.4Planification de projet Gantt . 492
22.15.5Objet . 492
22.15.6MindMap . 492

Guide de référence du langage PlantUML (1.2025.0) 578 / 580

CONTENTS CONTENTS

22.15.7Réseau (nwdiag) . 493
22.15.8Note . 493
22.15.9Sequence . 494
22.15.10State . 494

22.16Équivalence de style (entre le créole et le HTML) . 494

23 Defining and using sprites 496
23.1 Inline SVG sprite . 496
23.2 Changing colors . 498
23.3 Encoding Sprite . 498
23.4 Importing Sprite . 499
23.5 Examples . 499
23.6 StdLib . 500
23.7 Listing Sprites . 500

24 Skinparam command 502
24.1 Usage . 502
24.2 Nested . 502
24.3 Black and White . 502
24.4 Shadowing . 503
24.5 Reverse colors . 503
24.6 Colors . 504
24.7 Font color, name and size . 505
24.8 Text Alignment . 505
24.9 Examples . 506
24.10List of all skinparam parameters . 510

24.10.1Command Line: -language command . 510
24.10.2Command: help skinparams . 510
24.10.3Command: skinparameters . 510
24.10.4All Skin Parameters on the Ashley’s PlantUML Doc 513

25 Preprocesseur 514
25.1 Variable definition [=, ?=] . 514
25.2 Boolean expression . 515

25.2.1 Boolean representation [0 is false] . 515
25.2.2 Boolean operation and operator [&&, ||, ()] . 515
25.2.3 Boolean builtin functions [%false(), %true(), %not(<exp>), %boolval(<exp>)] . . 515

25.3 Conditions [!if, !else, !elseif, !endif] . 515
25.4 While loop [!while, !endwhile] . 516

25.4.1 While loop (on Activity diagram) . 516
25.4.2 While loop (on Mindmap diagram) . 517
25.4.3 While loop (on Component/Deployment diagram) 518

25.5 Procedure [!procedure, !endprocedure] . 518
25.6 Return function [!function, !endfunction] . 519
25.7 Default argument value . 520
25.8 Unquoted procedure or function [!unquoted] . 521
25.9 Keywords arguments . 522
25.10Including files or URL [!include, !include_many, !include_once] 522
25.11Including Subpart [!startsub, !endsub, !includesub] . 523
25.12Builtin functions [%] . 523
25.13Logging [!log] . 524
25.14Memory dump [!dump_memory] . 525
25.15Assertion [!assert] . 525
25.16Building custom library [!import, !include] . 526
25.17Search path . 526
25.18Argument concatenation [##] . 526
25.19Dynamic invocation [%invoke_procedure(), %call_user_func()] 527
25.20Evaluation of addition depending of data types [+] . 528
25.21Preprocessing JSON . 528

Guide de référence du langage PlantUML (1.2025.0) 579 / 580

CONTENTS CONTENTS

25.22Including theme [!theme] . 528
25.23Migration notes . 529
25.24%splitstr builtin function . 529
25.25%splitstr_regex builtin function . 530
25.26%get_all_theme builtin function . 531
25.27%get_all_stdlib builtin function . 532

25.27.1Compact version (only standard library name) . 532
25.27.2Detailed version (with version and source) . 532

25.28%random builtin function . 534
25.29%boolval builtin function . 534

26 Unicode 535
26.1 Examples . 535
26.2 Jeu de caractères . 537
26.3 Using Unicode Character on PlantUML . 537

27 Bibliothèque standard de PlantUML 538
27.0.1 Vue d’ensemble de la bibliothèque standard . 538
27.0.2 Contribution de la communauté . 538

27.1 Contenu de la bibliothèque standard . 538
27.2 ArchiMate [archimate] . 540

27.2.1 Liste des sprites possibles . 541
27.3 Amazon Labs AWS Library [awslib] . 542
27.4 Azure library [azure] . 543
27.5 C4 Library [C4] . 544
27.6 Cloud Insight [cloudinsight] . 544
27.7 Cloudogu [cloudogu] . 545
27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy] 546

27.8.1 Basic Elements and Interconnections . 546
27.8.2 Elements . 547
27.8.3 Relationships . 548
27.8.4 Facets . 549
27.8.5 Identity . 549
27.8.6 Architecture . 549
27.8.7 Experience . 550
27.8.8 Intersections . 550
27.8.9 Alternative visual styling . 551

27.9 Elastic library [elastic] . 552
27.10Google Material Icons [material] . 554
27.11Kubernetes [kubernetes] . 555
27.12Logos [logos] . 556
27.13Office [office] . 558
27.14Open Security Architecture (OSA) [osa] . 560
27.15Tupadr3 library [tupadr3] . 563
27.16Bibliothèque AWS . 564

Guide de référence du langage PlantUML (1.2025.0) 580 / 580

	Diagramme de séquence
	Exemples de base
	Déclaration d'un participant
	Déclaration des participants sur plusieurs lignes
	Caractères non alphanumérique dans les participants
	Message à soi-même
	Alignement du texte
	Texte du message de réponse sous la flèche

	Autre style de flèches
	Changer la couleur des flèches
	Numérotation séquentielle des messages
	Titre, en-tête et pied de page de la page
	Découper un diagramme
	Regrouper les messages (cadres UML)
	Étiquette secondaire de groupe
	Note sur les messages
	Encore plus de notes
	Changer l'aspect des notes
	Note sur tous les participants [à travers]
	Plusieurs notes alignées au même niveau [/]
	Créole (langage de balisage léger) et HTML
	Diviseur ou séparateur
	Référence
	Retard
	Habillage du texte
	Séparation verticale
	Lignes de vie
	Retour
	Création d'un participant
	Syntaxe raccourcie pour l'activation, la désactivation, la création
	Messages entrant et sortant
	Flèches courtes pour les messages entrants et sortants
	Anchors and Duration
	Stéréotypes et décoration
	Position of the stereotypes
	Top postion (by default)
	Bottom postion

	Plus d'information sur les titres
	Cadre pour les participants
	Supprimer les participants en pied de page
	Personnalisation
	Changer le padding
	Appendix: Examples of all arrow type
	Normal arrow
	Itself arrow
	Incoming and outgoing messages (with '[', ']')
	Incoming messages (with '[')
	Outgoing messages (with ']')
	Short incoming and outgoing messages (with '?')
	Short incoming (with '?')
	Short outgoing (with '?')

	SkinParameter spécifique
	Par défaut
	LifelineStrategy
	style strictuml

	Masquer un participant non lié
	Colorier un groupe de message
	Mainframe
	Slanted or odd arrows
	Parallel messages (with teoz)

	Diagramme de cas d'utilisation
	Cas d'utilisation
	Acteurs
	Changer le style d'acteur
	Stick man (par défaut)
	Homme creux

	Description des cas d'utilisation
	Utiliser un package
	Exemples très simples
	Héritage
	Notes
	Stéréotypes
	Changer les directions des flèches
	Découper les diagrames
	De droite à gauche
	La commande Skinparam
	Exemple complet
	Business Use Case
	Business Use Case
	Acteur commercial

	Modifier la couleur et le style des flèches (style en ligne)
	Modifier la couleur et le style d'un élément (style en ligne)
	Afficher les données JSON sur le diagramme Usecase
	Exemple simple

	Diagramme de classes
	Élément déclaratif
	Relations entre classes
	Libellés sur les relations
	Caractères non alphabétiques dans les noms d'éléments et les étiquettes de relations
	Commencer un nom avec $

	Ajouter des méthodes
	Définition de la visibilité
	Abstrait et statique
	Corps de classe avancé
	Notes et stéréotypes
	Plus de notes
	Note sur un champ (champ, attribut, membre) ou une méthode
	Note sur un champ ou une méthode
	Note sur une méthode de même nom

	Note sur les liens
	Classe et interface abstraites
	Masquer les attributs et les méthodes
	Masquer les classes
	Supprimer des classes
	Hide, Remove or Restore tagged element or wildcard
	Masquer ou supprimer une classe non liée
	Utilisation de la généricité
	Caractère spécial
	Packages
	Modèle de paquet
	Les espaces de nommage
	Creation automatique d'espace de nommage
	Interface boucle
	Changer la direction
	Classes d'association
	Association sur la même classe
	Personnalisation
	Stéréotypes Personnalisés
	Dégradé de couleurs
	Aide pour la mise en page
	Découper les grands diagrammes
	Extension et implementation [extends, implements]
	Relations entre crochets (liens ou flèches) style
	Style de ligne
	Couleur de ligne
	Épaisseur de ligne
	Mélange

	Modifier la couleur et le style d'une relation (lien ou flèche) (style en ligne)
	Modifier la couleur et le style d'une classe (style en ligne)
	Flèches de/vers les membres de la classe
	Regroupement de flèche d'héritage
	GroupInheritance 1 (pas de regroupement)
	GroupInheritance 2 (regroupement à partir de 2)
	GroupInheritance 3 (regroupement uniquement à partir de 3)
	GroupInheritance 4 (regroupement uniquement à partir de 4)

	Display JSON Data on Class or Object diagram
	Simple example

	Packages and Namespaces Enhancement
	Qualified associations
	Minimal example
	Another example

	Change diagram orientation
	Top to bottom (by default)
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)
	Left to right
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)

	Diagramme d'objets
	Définition des objets
	Relations entre les objets
	Association d'objects
	Ajout de champs
	Caractéristiques communes avec les diagrammes de classes
	Table de correspondance ou tableau associatif
	Program (or project) evaluation and review technique (PERT) with map
	Display JSON Data on Class or Object diagram
	Simple example

	Diagrammes d'activité (ancienne syntaxe)
	Action simple
	Texte sur les flèches
	Changer la direction des flèches
	Branches
	Encore des branches
	Synchronisation
	Description détaillée
	Notes
	Partition
	Paramètre de thème
	Octogone
	Exemple complet

	Diagramme d'activité (nouvelle syntaxe)
	Avantages de la nouvelle syntaxe
	Transition vers la nouvelle syntaxe
	Action simple
	Départ/Arrêt [start, stop, end]
	Conditionnel [if, then, else]
	Plusieurs conditions (en mode horizontal)
	Plusieurs conditions (en mode vertical)

	Switch and case [switch, case, endswitch]
	Arrêt après une action au sein d'une condition [kill, detach]
	Boucle de répétition [repeat, repeatwhile, backward]
	Interruption d'une boucle [break]
	Goto and Label Processing [label, goto]
	Boucle « tant que » [while]
	Traitement parallèle [fork, fork again, end fork, end merge]
	Simple fork
	fork avec fusion finale
	Label sur end fork (ou UML joinspec)
	Autre exemple

	Traitement fractionné
	Split
	Fractionnement de l'entrée (multidébut)
	Fractionnement de la sortie (plusieurs extrémités)

	Notes
	Couleurs
	Lignes sans pointe de flèches
	Flèches
	Connecteurs
	Connecteurs en couleur
	Regroupement ou partition
	Groupe
	Partition
	Groupe, partition, paquet, rectangle ou carte

	Swimlanes
	Détacher ou arrêter [detach, kill]
	SDL (Specification and Description Language)
	Exemple complet
	Style de condition
	Style intérieur (par défaut)
	Style diamant
	Style InsideDiamond (ou Foo1)

	Style de fin de condition
	Style diamant (par défaut)
	Style ligne horizontale (hline)

	Avec le style (global)
	Sans style (par défaut)
	Avec style

	Diagramme de composants
	Composants
	Interfaces
	Exemple de base
	Utilisation des notes
	Regroupement de composants
	Changement de direction des flèches
	Utiliser la notation UML2
	Utiliser la notation UML1
	Utiliser le style rectangle (supprime toute notation UML)
	Description longue
	Couleurs individuelles
	Sprites et stéréotypes
	Skinparam
	Paramètre de style spécifique
	componentStyle

	Masquer ou supprimer un composant non lié
	Masquer, supprimer ou restaurer un composant balisé ou un joker
	Display JSON Data on Component diagram
	Simple example

	Port [port, portIn, portOut]
	Port
	PortIn
	PortOut
	Mixing PortIn & PortOut

	Diagramme de déploiement
	Déclarer un élément
	Declaring element (using short form)
	Actor
	Component
	Interface
	Usecase

	Linking or arrow
	Bracketed arrow style
	Line style
	Line color
	Line thickness
	Mix

	Change arrow color and style (inline style)
	Change element color and style (inline style)
	Nestable elements
	Packages and nested elements
	Example with one level
	Other example
	Full nesting

	Alias
	Simple alias with as
	Examples of long alias

	Round corner
	Specific SkinParameter
	roundCorner

	Appendix: All type of arrow line
	Appendix: All type of arrow head or '0' arrow
	Type of arrow head
	Type of '0' arrow or circle arrow

	Appendix: Test of inline style on all element
	Simple element
	Nested element
	Without sub-element
	With sub-element

	Appendix: Test of style on all element
	Simple element
	Global style (on componentDiagram)
	Style for each element
	Nested element (without level)
	Global style (on componentDiagram)
	Style for each nested element
	Nested element (with one level)
	Global style (on componentDiagram)
	Style for each nested element

	Appendix: Test of stereotype with style on all element
	Simple element

	Display JSON Data on Deployment diagram
	Simple example

	Mixing Deployment (Usecase, Component, Deployment) element within a Class or Object diagram
	Mixing all elements

	Port [port, portIn, portOut]
	Port
	PortIn
	PortOut
	Mixing PortIn & PortOut

	Change diagram orientation
	Top to bottom (by default)
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)
	Left to right
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)

	Diagramme d'état
	Exemple simple
	Autre rendu
	État composite
	Sous-état interne
	Lien entre sous-états

	Nom long
	Historique de sous-état [[H], [H*]]
	États parallèles [fork, join]
	États concurrents [–, ||]
	Séparateur horizontal –
	Séparateur vertical ||

	Conditionnel [choice]
	Exemple avec tous les stéréotypes [choice, fork, join, end]
	Petits cercles [entryPoint, exitPoint]
	Petits carrés [inputPin, outputPin]
	Multiples petits carrés [expansionInput, expansionOutput]
	Direction des flèches
	Changer la couleur ou le style des flèches
	Note
	Note sur un lien
	Plus de notes
	Changer les couleurs localement [Inline color]
	Skinparam
	Test de tous les skinparam spécifiques aux diagrammes d'état:

	Changement de style
	Modifier la couleur et le style d'un état (style en ligne)
	Alias
	Display JSON Data on State diagram
	Simple example

	State description
	Style for Nested State Body

	Diagramme de temps
	Définitions des participants
	Horloge et signaux binaires
	Ajout de messages
	Référence relative de temps
	Points d'ancrage
	Définition participant par participant
	Choix du zoom
	État initial
	État complexe
	Hidden state
	Masquer l'axe du temps
	Utilisation de l'heure et de la date
	Change Date Format
	Manage time axis labels
	Label on each tick (by default)
	Manual label (only when the state changes)

	Ajout de contraintes
	Période surlignée
	Using notes
	Ajout de textes
	Exemple complet
	Exemple numérique
	Ajout de couleur
	Using (global) style
	Without style (by default)
	With style

	Applying Colors to specific lines
	Compact mode
	By default
	Global mode with mode compact
	Local mode with only compact on element

	Scaling analog signal
	Without scaling: 0-max (by default)
	With scaling: min-max

	Customise analog signal
	Without any customisation (by default)
	With customisation (on scale, ticks and height)

	Order state of robust signal
	Without order (by default)
	With order
	With order and label

	Defining a timing diagram
	By Clock (@clk)
	By Signal (@S)
	By Time (@time)

	Annotate signal with comment

	Display JSON Data
	Complex example
	Highlight parts
	Using different styles for highlight
	JSON basic element
	Synthesis of all JSON basic element

	JSON array or table
	Array type
	Minimal array or table
	Number array
	String array
	Boolean array

	JSON numbers
	JSON strings
	JSON Unicode
	JSON two-character escape sequence

	Minimal JSON examples
	Empty table or list
	Using (global) style
	Without style (by default)
	With style

	Display JSON Data on Class or Object diagram
	Simple example
	Complex example: with all JSON basic element

	Display JSON Data on Deployment (Usecase, Component, Deployment) diagram
	Simple example

	Display JSON Data on State diagram
	Simple example

	Creole on JSON

	Display YAML Data
	Complex example
	Specific key (with symbols or unicode)
	Highlight parts
	Normal style
	Customised style

	Using different styles for highlight
	Using (global) style
	Without style (by default)
	With style

	Creole on YAML

	Diagramme de réseau avec nwdiag
	Diagramme simple
	Définir un réseau
	Définir certains éléments ou serveurs sur un réseau
	Exemple complet

	Define multiple addresses
	Grouping nodes
	Define group inside network definitions
	Define group outside of network definitions
	Define several groups on same network
	Example with 2 group
	Example with 3 groups

	Extended Syntax (for network or group)
	Network
	Group

	Using Sprites
	Using OpenIconic
	Same nodes on more than two networks
	Peer networks
	Peer networks and group
	Without group
	Group on first
	Group on second
	Group on third

	Add title, caption, header, footer or legend on network diagram
	With or without shadow
	With shadow (by default)
	Without shadow

	Change width of the networks
	First example
	Second example

	Other internal networks
	Using (global) style
	Without style (by default)
	With style

	Appendix: Test of all shapes on Network diagram (nwdiag)

	Salt (Wireframe)
	Composants de base
	Text area
	Ouvrir, fermer une liste déroulante
	Utilisation de la grille [| et #, !, -, +]
	Regroupement de champs
	Utilisation des séparateurs
	Arbre (structure arborescente) [T]
	Arbre et Tableau [T]
	Accolades délimitantes [{, }]
	Ajout d'onglet [/]
	Utilisation de menu [*]
	Tableaux avancés
	Barres de défilement [S, SI, S-]
	Couleurs
	Creole on Salt
	Pseudo sprite [<<, >>]
	OpenIconic
	Ajouter un titre, un en-tête, un pied de page, une légende
	Zoom, DPI
	Sans zoom (par défaut)
	Scale
	DPI

	Include Salt "on activity diagram"
	Include salt "on while condition of activity diagram"
	Include salt "on repeat while condition of activity diagram"
	Skinparam
	Style

	ArchiMate
	Mot-clé Archimate
	Jonctions Archimate
	Exemple 1
	Exemple 2
	Liste des sprites possibles
	ArchiMate Macros
	Archimate Macros and Library
	Archimate elements
	Archimate relationships
	Appendice: Examples of all Archimate RelationTypes

	Diagramme de Gantt
	Déclaration des tâches
	Charge de travail
	Start
	Fin
	Début/Fin

	Déclaration sur une ligne (avec la conjonction et)
	Ajout de contraintes
	Noms courts
	Tasks with same name
	Personnaliser les couleurs
	État d'achèvement
	Ajout du pourcentage d'achèvement selon
	Changer la couleur de l'achèvement (par style)

	Jalon
	Jalon relatif (utilisation de contraintes)
	Jalon absolu (utilisation d'une date fixe)
	Jalon de fin de tâches maximum

	Hyperliens
	Calendrier
	Journées en couleur
	Changement d'échelle
	Daily (par défaut)
	Hebdomadaire
	Mensuel
	Trimestriel
	Annuel

	Zoom (exemple pour toute l'échelle)
	Zoom sur l'échelle hebdomadaire
	Sans zoom
	Avec zoom
	Zoom sur l'échelle hebdomadaire
	Sans zoom
	Avec zoom
	Zoom sur l'échelle mensuelle
	Sans zoom
	Avec zoom
	Zoom sur l'échelle trimestrielle
	Sans zoom
	Avec zoom
	Zoom sur l'échelle annuelle
	Sans zoom
	Avec zoom

	Weekscale with Weeknumbers or Calendar Date
	With Weeknumbers (by default)
	With Weeknumbers (starting from 1)
	With Calendar Date

	Jour non travaillé
	Définition d'une semaine en fonction des jours fermés
	Working days
	Succession de tâches simplifiée
	Travailler avec des ressources
	Hide resources
	Without any hiding (by default)
	Hide resources names
	Hide resources footbox
	Hide the both (resources names and resources footbox)

	Séparateur horizontal
	Vertical Separator
	Exemple complexe
	Comments
	Avec style
	Sans style (par défaut)
	Avec style
	Avec style (exemple complet)
	Nettoyer le style

	Ajouter des notes
	Pause des tâches
	Modifier les couleurs des liens
	Tâches ou jalons sur la même ligne
	Mise en avant aujourd'hui
	Tâche entre deux jalons
	Grammar and verbal form
	Ajouter un titre, un en-tête, un pied de page, une légende ou une légende
	Add color on legend
	Suppression des boîtes de pied (exemple pour toutes les échelles)
	Langue du calendrier
	English (en, par défaut)
	Allemand (de)
	Japonais (ja)
	Chinois (zh)
	Coréen (ko)

	Supprimer des tâches ou des jalons
	Start a project, a task or a milestone a number of days before or after today
	Change Label position
	The labels are near elements (by default)
	Label on first column
	Label on last column

	MindMap
	Syntaxe OrgMode
	Syntaxe Markdown
	Notation arithmétique [+, -]
	Multilignes
	Multiroot Mindmap
	Couleurs
	Avec couleur en ligne
	Avec couleur de style

	Masquer les bordures [_]
	Diagramme multi-directionnel
	Change (whole) diagram orientation
	Left to right direction (by default)
	Top to bottom direction
	Right to left direction
	Bottom to top direction

	Exemple complet
	Changement de style
	nœud, profondeur
	sans boîte

	Word Wrap
	Creole on Mindmap diagram

	Structure de répartition du travail (WBS)
	Syntaxe OrgMode
	Changement de direction [<, >]
	Notation arithmétique [+, -]
	Multi-lignes
	Masquer les bordures [_]
	Colors (with inline or style color)
	Using style
	Word Wrap
	Add arrows between WBS elements
	Creole on WBS diagram

	Mathématiques
	Diagramme indépendant
	Comment cela fonctionne ?

	Information Engineering Diagrams
	Information Engineering Relations
	Entities
	Complete Example

	Commandes communes dans PlantUML
	Global Elements
	Description de la syntaxe créole
	Commande de contrôle du style
	Comments
	Simple comment
	Block comment
	Full example

	Zoom
	Title
	Caption
	Footer and header
	Legend the diagram
	Appendix: Examples on all diagram
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Appendix: Examples on all diagram with style
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Mainframe
	Appendix: Examples of Mainframe on all diagram
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Créole
	Texte mis en évidence
	Listes
	Caractère d'échappement
	Entêtes
	Emoji
	Unicode block 26

	Lignes horizontales
	Links
	Code
	Tableau
	Créer un tableau
	Ajouter une couleur sur les lignes ou les cellules
	Ajouter une couleur sur la bordure et le texte
	Pas de bordure ou même couleur que le fond
	En-tête en gras ou non

	Arbre
	Caractères spéciaux
	Tag HTML
	Common HTML element
	Subscript and Superscript element [sub, sup]

	OpenIconic
	Annexe : Exemples de " liste créole " sur tous les diagrammes
	Activité
	Classe
	Composant, Déploiement, Cas d'utilisation
	Planification de projet Gantt
	Object
	MindMap
	Réseau (nwdiag)
	Note
	Sequence
	State

	Annexe : Exemples de " lignes horizontales créoles " sur tous les diagrammes
	Activité
	Classe
	Composant, déploiement, cas d'utilisation
	Planification de projet Gantt
	Objet
	MindMap
	Réseau (nwdiag)
	Note
	Sequence
	State

	Équivalence de style (entre le créole et le HTML)

	Defining and using sprites
	Inline SVG sprite
	Changing colors
	Encoding Sprite
	Importing Sprite
	Examples
	StdLib
	Listing Sprites

	Skinparam command
	Usage
	Nested
	Black and White
	Shadowing
	Reverse colors
	Colors
	Font color, name and size
	Text Alignment
	Examples
	List of all skinparam parameters
	Command Line: -language command
	Command: help skinparams
	Command: skinparameters
	All Skin Parameters on the Ashley's PlantUML Doc

	Preprocesseur
	Variable definition [=, ?=]
	Boolean expression
	Boolean representation [0 is false]
	Boolean operation and operator [&&, ||, ()]
	Boolean builtin functions [%false(), %true(), %not(<exp>), %boolval(<exp>)]

	Conditions [!if, !else, !elseif, !endif]
	While loop [!while, !endwhile]
	While loop (on Activity diagram)
	While loop (on Mindmap diagram)
	While loop (on Component/Deployment diagram)

	Procedure [!procedure, !endprocedure]
	Return function [!function, !endfunction]
	Default argument value
	Unquoted procedure or function [!unquoted]
	Keywords arguments
	Including files or URL [!include, !include_many, !include_once]
	Including Subpart [!startsub, !endsub, !includesub]
	Builtin functions [%]
	Logging [!log]
	Memory dump [!dump_memory]
	Assertion [!assert]
	Building custom library [!import, !include]
	Search path
	Argument concatenation [##]
	Dynamic invocation [%invoke_procedure(), %call_user_func()]
	Evaluation of addition depending of data types [+]
	Preprocessing JSON
	Including theme [!theme]
	Migration notes
	%splitstr builtin function
	%splitstr_regex builtin function
	%get_all_theme builtin function
	%get_all_stdlib builtin function
	Compact version (only standard library name)
	Detailed version (with version and source)

	%random builtin function
	%boolval builtin function

	Unicode
	Examples
	Jeu de caractères
	Using Unicode Character on PlantUML

	Bibliothèque standard de PlantUML
	Vue d'ensemble de la bibliothèque standard
	Contribution de la communauté
	Contenu de la bibliothèque standard
	ArchiMate [archimate]
	Liste des sprites possibles

	Amazon Labs AWS Library [awslib]
	Azure library [azure]
	C4 Library [C4]
	Cloud Insight [cloudinsight]
	Cloudogu [cloudogu]
	EDGY: An Open Source tool for collaborative Enterprise Design [edgy]
	Basic Elements and Interconnections
	Elements
	Relationships
	Facets
	Identity
	Architecture
	Experience
	Intersections
	Alternative visual styling

	Elastic library [elastic]
	Google Material Icons [material]
	Kubernetes [kubernetes]
	Logos [logos]
	Office [office]
	Open Security Architecture (OSA) [osa]
	Tupadr3 library [tupadr3]
	Bibliothèque AWS

	Contents

